
PLEASE ALSO READ:
In Etter, 6.4, 7.1, 7.2

int main(int argc, char *argv[])
{
 int a;
 int *b;
 // rest of the program would go here
 return 0;
}

What the correct answers are:
Expression Type

a int
b int *

*a error
*b int
&a int *
&b int **

CS16, 10S, UCSB—Handout for H20—The type expression game (PDF)
http://www.cs.ucsb.edu/~pconrad/cs16/10S/homework/H20/handout

Why type is important
The concept of type is very important in C. This is also true in C++,
which you'll study if you go on to CS24, CS32, and CS48. And, the way
types work in C++ is very similar—almost identical, in fact— to how they work in C.
When you get error messages from either the Ch interpreter or the cc compiler, the message may say things
like: found (int *) value where (int) value was expected. So understanding the difference between
int and int * is very important to getting your programs to compile correctly, and understanding the
messages you get when they don't.

The basic exercise
A basic exercise I've used in C/C++
courses for many years is the one
illustrated below. We start with a segment
of code, such as the one shown in the box
at the right hand side of the page.
This is obviously not a "useful" C
program—to be useful, there would have
to be some more code at the comment line
that says "rest of code goes here". However, it does give us a context to answer some questions about type.
The question is in the form a table where the left column contains an expression, and the right column asks
what the type of that expression would be. For example:

What you'll be given as the problem
Expression Type

a
b

*a
*b
&a
&b

Here's how the first four are solved.
a is of type int, so the correct answer is int (cover up the a in the declaration int a; and what is left is
int).
b is of type int *, so the correct answer is int * (cover up the b in the declaration int *b; and what is
left is int *).
We'll continue with explanations of (*a, *b, &a and &b) on the next page.

Please turn over for more...Please turn over for more...

http://www.cs.ucsb.edu/~pconrad/cs16/10S/homework/H20/
http://www.cs.ucsb.edu/~pconrad/cs16/10S/homework/H20/handout/handout.H20.pdf
http://www.cs.ucsb.edu/~pconrad/cs16/10S/homework/H20/handout/

int main(int argc, char *argv[])
{
 int a;
 int *b;
 // rest of the program would go here
 return 0;
}

...continued from other side...continued from other side

How to find the type of *a, *b, &a and &b

We continue now with an explanation of
the last four lines in the exercise on the
previous page—the code appears again in
the box at the right hand side of the page.

Expression Type
*a
*b
&a
&b

*a is an error—since a is not a pointer, it cannot be dereferenced. So the correct answer is error.
*b however, is not an error: since b is of type int *, it points to something of type int. So the answer is
int

The unary * operator means "dereference", i.e. follow the pointer.
So if we follow an int * pointer, to what it points to, what we are left with is an int. So the correct
answer is int
Here's another way to think about it:

The unary * in an expression takes away a star from the declaration.
So if a * appears in front of something of type int *, the stars cancel each other out, and we
are left with int.
Using this rule, if there isn't a star to remove, then you have an error.

For &a, we start by noting that a is of type int, and taking the address of an int gives us an int *. So the
answer is int *

You can also think of it this way: an & operator adds a star to the type (provided the expression it is
applied to is a valid expression)

Similarly for &b, since b is of type int *, taking the address of b gives us an int **

The adding a star rule still applies. An int ** is a pointer to an int *, i.e. an pointer to a pointer to
an int.
Or, we could say that an int ** is the address of a variable, which itself contains the address of some
other int variable.

Please see the next page for more...Please see the next page for more...

Code:

int main()

{
 int a[] = {12, 23, 45};
 double b[] = {0.4, 0.5, 0.6};
 // ...
 return 0;
}

...continued from previous page...continued from previous page
A note about the ** variables:

** type variables do occur in practice when handling certain pointer situations that arise in CS24 and
CS32.
*** and **** and even higher levels of star are legal, but are much more rare in practice.
If your code is getting to the point of needing four or more stars, it may be getting too complex,
and you may want to look for a simpler way to solve your problem.

Finally, a note that if we put in double (or char, etc.) instead of int, the rules are the same:—e.g. for
double *c; we have:

c of type double *, *c of type double, and &c of type double **.

Adding arrays into the type expression game
As we recall the name of an array is a pointer to its first element.
So in the type expression game, if we are given the name of an array of int for example, we should treat it as
an int *.

Also, each element of the array is of the type of the array, and array subscripting, is just another form of
pointer dereference, i.e.

a[0] is equivalent to *(a)
a[1] is equivalent to *(a + 1)

See if you can use those facts to understand the answers in the example below.
What the correct answers are:

Expression Type
a int *
*a int

a[1] int

a[3] int
(*see explanation)

&a int **
b double *

b[2] double
*b[2] error
&b[2] double *

*Note that although it is likely a logic error to subscript a[3] when a contains only elements a[0], a[1] and
a[2], it is not a type error. So the correct answer here is still int, not error.

Please turn over for more...Please turn over for more...

struct Point {
 double x;
 double y;
};

struct Time {
 int h;
 int m;
};

int main()
{
 struct Point p;
 struct Point *q;
 struct Time *t;
 int a;
 // ...
 return 0;
}

...continued from other side...continued from other side
Adding structs into the type expression game

As we recall from previous homework assignments, and sections 7.1 and 7.2 in the textbook, a struct is a
way to create a new type—in addition to int, double, char, char *, int *, etc. A struct has members inside it:
for example:
In the type expression game, if we reference a variable that is an
entire struct, the answer is the type of that struct.

Expression Type Expression Type

p struct
Point

&p struct
Point *

*q struct
Point

t struct
Time *

q
struct
Point
*

*p

error
(p isn't
a
pointer)

&q
struct
Point
**

*t
struct
Time

If we reference an individual member of a struct, the answer is the type of the member of the struct. Here
are some examples:

Expression Type

p.x double

&(p.y) double *

(*q).x double

(*t).h int

If we reference a member of a struct that doesn't exist, or use the . operator on something that isn't a struct,
that's an error. Deferencing something that isn't a pointer is also still an error, just as before:

(*t).x error (*t is a struct Time; there's no x in a struct Time)

a.x error (a isn't a struct, so you can't use the . on it)

q.x error (q isn't a struct—it's a struct Point *, so you can't use the . on it)

(*p).x error (we can't dereference p, because it isn't a pointer)

Please see the next page for more...Please see the next page for more...

struct Point {
 double x;
 double y;
};

struct Circle {
 struct Point center;
 double radius;
};

struct Student {
 int perm;
 char name[10];
}

int main()
{
 struct Circle circles[4];
 struct Student s;
 struct Student students[5];
 struct Circle *e;
 struct Circle f;
 // real code would go here
 return 0;
}

...continued from previous page...continued from previous page
Introducing the -> notation into the Type Expression Game

Finally, we need to keep in mind that p->x is an abbreviation for (*p).x So whenever we see p->x, we can
just convert to (*p).x and then apply the rules above. Here are some examples:

q->x double same as (*q).x

p->y error (p->y means (*p).y and we can't dereference p, because it
isn't a pointer)

t->y error (t->y means (*t).y, and *t is of type struct Time, which has
no member called y

t->m int same as (*t).m

&(t->m) int * apply & to (*t).m which adds a *

Eventually, you'll get used to the p->x syntax, and you won't need to convert to understand what to do with
the p->x notation.

Nested structs, and arrays inside structs
As you have seen on previous homeworks, we can have structs inside other
structs, arrays inside other structs, and arrays of structs. Those work pretty
much the way you would expect—here are a few examples to illustrate.
These pertain to the code at the right hand side of the page.

circles[0] struct Circle one element of the array

circles struct Circle *
the name of the array is a
pointer to the first element

s.name char *
name is an array of char inside
s

students[0].name[1] char
one char in the name array
inside one struct Student inside
the students array

e->center struct Point
e is a struct Circle *, e->center
is a struct Point

e->center.x double
e is a struct Circle *, e->center
is a struct Point, and then we
can select the x field inside of it.

e->center->y error

e is a struct Circle *, e->center
is a struct Point—not a struct
Point *. So we can't apply the -
> to it.

See http://www.cs.ucsb.edu/~pconrad/cs16/topics/typeExpressions for more practice problems.

End of Handout for H20

http://www.cs.ucsb.edu/~pconrad/cs16/topics/typeExpressions

