
An Empirical Study of the Content andQuality of Sprint
Retrospectives in Undergraduate Team Software Projects
Christopher Hundhausen

chris.hundhausen@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

Phillip Conrad
phtcon@ucsb.edu
UC Santa Barbara

Santa Barbara, California, USA

Ahsun Tariq
tariqa@oregonstate.edu
Oregon State University
Corvallis, Oregon, USA

Surya Pugal
spugal@ucsb.edu
UC Santa Barbara

Santa Barbara, California, USA

Bryan Zamora Flores
bzamoraflores@ucsb.edu

UC Santa Barbara
Santa Barbara, California, USA

ABSTRACT

The retrospective, or retro, is a fundamental component of the Ag-
ile process, widely used in both software engineering courses and
industry. In a retro, teams come together at the end of a sprint to re-
flect on their team’s performance. We conducted an empirical study
to explore three research questions concerning retros in undergrad-
uate team projects: (1) What do students reflect on? (2) What is the
quality of their reflections? (3) How do teams’ retros vary in terms
of content and quality? Our study analyzed a corpus of 963 state-
ments documented in the retros of 32 undergraduate software teams
(n = 182 students) enrolled in four software engineering courses at
two North American universities. A content analysis revealed that
teams reflected most often on their work, communication, and col-
laboration practices. Nearly a third of teams’ reflections focused on
their general work practices, while nearly half focused on specific
areas of the software development lifecycle—most prominently, pull
requests, issues, and coding/testing/debugging. An analysis of the
quality of teams’ retro reflections showed that only 13% provided
justification for a strategy to be stopped, continued, or started. An
analysis of team-by-team results indicated significant differences
in teams’ retro content and quality. We compare these results to
previous studies of retros in academia and industry, and consider
their implications for software engineering education.

CCS CONCEPTS

• Human-centered computing → Empirical studies in collabo-

rative and social computing; • Social and professional topics →
Software engineering education; Software engineering ed-

ucation; Team Projects; • Software and its engineering →
Programming teams.

KEYWORDS

team software projects, software engineering education, Agile devel-
opment, retrospectives, metacognition, reflection, content analysis

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

© 2024 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-0498-7/24/04
https://doi.org/10.1145/3639474.3640074

ACM Reference Format:

ChristopherHundhausen, Phillip Conrad, Ahsun Tariq, Surya Pugal, and Bryan
Zamora Flores. 2024. An Empirical Study of the Content and Quality of
Sprint Retrospectives in Undergraduate Team Software Projects. In 46th

International Conference on Software Engineering: Software Engineering Edu-

cation and Training (ICSE-SEET ’24), April 14–20, 2024, Lisbon, Portugal.ACM,
New York, NY, USA, 11 pages. https://doi.org/10.1145/3639474.3640074

1 INTRODUCTION

The Agile development approach [30]—widely adopted in both
software engineering education and industry—is emphatic about
the need for software teams to reflect on their processes via a
retrospective (or retro) [12], in which a team comes together at the
end of each work period ("sprint") to reflect on:

(1) What went well (and should be continued)?
(2) What did not go well (and should be stopped or changed)?
(3) What new things should be tried in the next sprint?

Retros engage students in reflecting on, assessing, and improv-
ing their processes; thus, studying retros can provide educators
with insight into what teams are struggling with, where they are
succeeding, and how carefully they are reasoning about their de-
velopment process. This paper presents an empirical study that
explores three research questions related to retros:

RQ 1 : What do teams focus on in retros?

RQ 2 : What is the quality of teams’ retro reflections?

RQ 3 : How do teams’ retros vary in terms of content and

quality?

Our study considers the retros of undergraduate software devel-
opment teams engaged in required projects in four offerings of two
undergraduate courses held in person at two large North American
research universities (n = 32 teams, 182 students) between 2021
and 2022. To the best of our knowledge, this work contributes the
largest-scale study of the content of retros to date, together with
the first-ever analysis of the quality of retro reflections.

https://orcid.org/0009-0006-8531-7120
https://doi.org/10.1145/3639474.3640074
https://doi.org/10.1145/3639474.3640074

ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Christopher Hundhausen et al.

2 RELATEDWORK

2.1 Reflection in Software Engineering and

Software Engineering Education

A form of project-based [36] and collaborative [7] learning, team
software development projects are seen as instrumental in helping
students to develop the soft and technical skills needed to succeed
in the software profession [18, 19]. In team software projects, re-
flection—assessing the team’s processes and progress to determine
how the team can improve—is regarded as crucial to success [23].
Professional software engineers have long been interested in hon-
ing effective reflective practices [3, 14], which are widely seen as a
hallmark of professional expertise [42].

Lamororeux [23] highlights several benefits of reflective prac-
tice in software development teams: It helps developers improve
practices, build trust, communicate openly, and improve synchro-
nization and productivity. Schön [42] distinguishes between two
key forms of reflection: reflection-in-action, in which one assesses
one’s practices while in themidst of performing them; and reflection-
on-action, in which one assesses one’s practices after the fact. This
research considers retros, which are a form of the latter.

Reflection is a key component of the more general practice of
metacognition, which encompasses planning, monitoring, and re-
flecting on thinking and behavior [22, 32, 34]. Metacognition has
been widely studied in computing education [29, 38], and has been
shown to be a crucial soft skill in professional software develop-
ment [1, 37, 43]. Moreover, it has been identified as being partic-
ularly deficient in studies of new software developers in indus-
try [4, 5]. By studying student teams’ use of reflection in retros, our
work aims to help address this deficiency by laying a foundation
for improved pedagogical and technological interventions.

2.2 Studying and Promoting Reflection in

Software Engineering Education

There has been great interest in developing approaches to promote
student reflection in the software development process [10, 16,
31, 37, 39]. While much of this research focuses on pedagogical
approaches, there have been a few efforts to collect and analyze
empirical data on students’ reflections in the context of software
engineering projects (e.g., [9, 17, 31, 39]). In one study, students were
found to exhibit low participation in reflection-based exercises and
would often participate only when they were frequently reminded
[39]. Likewise, in another study, reflection was found to be rare
in undergraduate team software development projects, with team
communications overwhelmingly centered around planning and
technical contributions [17]. In addition to being of limited quantity,
reflections have been found to be qualitatively shallow in team
projects [31]. A common theme across these studies is that students
are reluctant to engage in reflection, and that when they do engage
in reflection, their reflections tend to be at a superficial level. Our
study reinforces this theme, while focusing explicitly on the retro
as opposed to more general reflection activities during software
development.

2.3 Studying Agile Retros

The agile retrospective (or retro) is a form of group reflection [46].
The Agile community of practice has written widely about the
retro (e.g., [11, 12, 20, 25, 28]. In addition, several academic papers
have proposed approaches for making retros more effective (e.g.,
[6, 35, 40, 41, 45]. While these papers outline best practices for
engaging teams in retros, they do not present empirical studies of
retro content and quality.

At least four prior empirical studies have performed content anal-
yses of retros in an attempt to understand their focus and how they
influence team practices and decision making. Only one of these
studies occurred within the context of software engineering educa-
tion [15]; the other three considered teams in industry [2, 13, 26].
Table 1 juxtaposes this body of work with our own study. As shown,
the content coding schemes used in these studies differ widely, mak-
ing it difficult to compare results across studies. Nonetheless, the
table highlights two distinguishing features of our study: (1) Ours
is by far the largest, spanning 182 developers, 32 teams, and 72
retros; and (2) ours is the only one to analyze the quality of retro
reflections.

In the only study of retros in computing education, Gestwicki
and McNely [15] performed a content analysis of artifacts from
retro meetings, identifying four main themes: Collaboration (identi-
fying opportunities for improving cooperation and social cohesion),
Learning (identifying common areas where the team needed to
improve their knowledge and skills), Support (“the team’s articula-
tion of their external dependencies”) and Community (the external
stakeholders and context in which the application was being devel-
oped). Across seven retros, the Collaboration theme was dominant,
always representing over half of the responses. Our study is similar
to this study in its use of content analysis, and in its finding that
collaboration is a major theme in retros. However, our study differs
from this study in three key respects: (a) it uses a different content
analysis framework, (b) it analyzes reflection quality in addition
to content, and (c) it considers multiple courses at two different
universities instead of a single course.

Three studies have investigated the retros of professional soft-
ware teams. In perhaps the most extensive study, Lehtinen et al. [26]
examined 37 retros from multiple teams at a single industrial soft-
ware organization over three years. While the authors also per-
formed a content analysis of statements from retros, they catego-
rized statements more broadly than we did, identifying statements
as positive (29%), negative (51%), or corrective action (20%). As the
primary purpose of a retro is continuous improvement of team
performance, identification of corrective actions is vital, so they
further analyzed the statements about corrective actions and found
teams focused most on areas that were under team control, in-
cluding task outcome, work practices, task difficulty, instructions,
estimations/resources and schedules.

Andriyani et al. [2] performed an investigation of agile retros
based on four teams comprising 16 professional software engineers
in total. By performing face-to-face interviews with developers,
observing team retro meetings and applying thematic analysis,
the authors found three stages of reflection: reporting and respond-
ing, relating and reasoning, and reconstructing. In the reporting and

An Empirical Study of the Content andQuality of Sprint Retrospectives in Undergraduate Team Software Projects ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

Table 1: Comparison of Empirical Studies of Retrospectives.

Year Study Context n t r Duration Content Categories Used Refl. Quality Studied?

2013 Gestwicki & Mc-
Nely [15]

Academia 13 1 7 15 wks Collaboration, Learning, Support, Community No

2017 Lehtinen et al. [26] Industry 30 9 37 9 wks 10 Process Area categories (e.g., Implementation, Testing)
× 4 Topic Type categories (People, Tasks, Methods, En-
vironment) × 3 Outcome categories (Positive, Negative,
Corrective Action)

No

2017 Andriyani et al. [2] Industry 16 4 4 2 wks Reporting & Responding, Relating & Reasoning,
Reconstructing, each with 1-3 lower-level themes

No

2018 Dingsøyer et al. [13] Industry 18 2 10 5 mos People/Relationships, Process, Tools, Project, Other Teams No
2024 This Study Academia 182 32 72 3–5 wks Five "Concern" categories (Collaboration, Communication,

Work, Learning, Camaraderie) × 13 "Focus Area" cate-
gories aligned with activities and artifacts in software
development lifecycle

Yes

𝑛=number of developers, 𝑡=number of teams, 𝑟=number of retros. Duration = length of the sprint/iteration(s) reflected on in the retros under study

responding stage, the authors identified two major themes: iden-
tification of barriers to team progress, and individual sentiments
about various situations. In the relating and reasoning stage, there
were three themes; evaluating previous action points, identifying
background causes, and identifying future action points. In the
reconstructing stage, the team would come up with a plan to fo-
cus on a given action point. In addition to identifying themes that
occur in retros, the study identified different levels of reflection,
observing that even professional software developers may fail to
engage in higher levels of reflection in team retros. The study also
highlighted a key problem with team retros: individual reflections
may be subject to memory bias; team members may recall events
based on personal experiences [6]. Based on these findings, the
authors proposed a framework for conducting agile retros.

Finally, Dingsøyr et al. [13] did a content analysis of the minutes
from six retros performed by two teams over a five month period
(n=12 retros). The authors categorized the items in the minutes
using the categories people/relationships, process, tools, project and
other teams. They found that of 109 items categorized, the dominant
categories was process (41 items, 38%) and people/relationships (30
items 28%). They also found that across the twelve retros, there
were 36 suggestions for improvement. The dominant category for
these was process (13 suggestions, 36%).

3 METHODS

3.1 Courses and Participants

This study considered four offerings of two software engineering
courses that took place between Fall, 2021 and Fall, 2022:

Course A (“Advanced Application Development”) was taught
by the second author at the Unversity of California (UC) Santa
Barbara. This 10 week course is taken primarily by second and
third year undergraduate computer science majors. It focuses on
the development of full-stack web applications through a series of
team assignments, followed by a 2-3 week team project focused on
a legacy application. The course emphasizes both Agile practices
(standups, sprints, Kanban, user stories, acceptance criteria, retros)
and GitHub workflows (pull requests, code reviews).

Course B (“Web Development”) was taught by the first author
at Washington State University. It is a 15-week advanced under-
graduate course in full-stack web development. During the first
10 weeks, students learn web programming through lectures, live
coding demos, and a series of individual assignments that build
upon each other to produce a full-stack web app. During the final
five weeks, students form software teams to enhance, and develop
new features for, the web app constructed in the first part of the
course. As part of the team project, students learn the same Agile
practices and GitHub workflows emphasized in Course A.

While both courses took place in person, they provided students
with the option to participate remotely via Zoom. Lectures were
recorded and made available to students. Outside of class meetings,
students engaged with online learning materials and communicated
via online communication tools.

Table 2 presents demographic data on study participants. The
study involved three offerings of Course A and one offering of
Course B. The study was approved by the Institutional Review
Boards of each university; students could opt in to the study through
an online informed consent form. For a team’s retro data to be
included in the study, all team members had to consent. As shown
in Table 2, in the four courses involved in this study, all members
of 32 of the 48 teams (n=182 students) consented to participate.

Table 2: Details on Teams and Students in Study

Students

Teams Consenting

Course Enr. Cons. Enr. n M F U M Age

A1 12 8 72 48 41 5 2 20.5
A2 12 8 71 47 39 8 0 20.3
A3 12 8 71 48 43 4 1 20.2
B 12 8 60 39 34 5 0 24.0

Totals: 48 32 263 182 157 22 3 20.9

Enr.=Enrolled, Cons.=Consenting, n=Total # of students, F=Female,
M=Male, U=Unspecified/Other,M Age=Mean Age

3.2 Materials and Procedure

3.2.1 Team Project. Table 3 presents details on the team software
development projects in each course. In Course A, teams of up to six

ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Christopher Hundhausen et al.

members were formed through a CATME team-building survey [24].
Students in Course B were asked to form their own teams of up to
five students; unassigned students were randomly placed on teams
with slots available. Teams in Course A were randomly assigned
to one of two legacy full stack web development projects from
previous course offerings. In Course B, all teams worked on the
same code project: a full-stack web app that served as the running
example in the first part of the course. Team projects, which were
worth 25% of students’ course grade in both courses, spanned three
to five weeks.

As they engaged in the project, student teams in both courses
were expected to employ the agile development practices empha-
sized in each course, including the use of issues, Kanban (project)
boards, feature branches, pull requests, code reviews, automated
tests, and retros. Grading of students and teams differed between
the two courses. In Course A, teams were awarded a grade based
on the number of story points they completed during the term,
with teaching personnel determining the story point values of each
team’s completed issues. In Course B, the instructor used a struc-
tured rubric to perform a detailed evaluation of teams’ GitHub
repositories, chat channels, and a required sprint report.

3.2.2 Retros. In their projects, teams engaged in two (Course A)
or three (Course B) sprint cycles. At the end of each sprint, teams
were required to participate in a retro. In Course A, teams were
instructed to choose a retro leader to run the retro session. At the
start of the retro, students were given five minutes to independently
compile lists of practices to (a) start in the next sprint, (b) stop doing
in the next sprint, and (c) continue doing in the next sprint. Team
members were asked to read and explain their items aloud; the
team leader would then insert the items into the appropriate list in
a team document. At the end of the retro, team members voted on
which items were most important. The three items with the most
votes were flagged for review at the next retro.

In Course B, teams were similarly prompted to participate in a
retro at the end of each sprint. In the retro meeting, which teams
were required to video record, teams were instructed to compile
three separate lists: (a) what went well (i.e., continue) (b) what could
be improved (i.e., stop), and (c) what changes to implement in the
next sprint (i.e., start). Teams documented their lists in a section of
a sprint report they were required to submit for each sprint.

3.3 Data Collection and Analysis

We collected teams’ retrospective statements from the documents
they were required to submit at the end of each sprint. For anal-
ysis purposes, we created a spreadsheet initially containing one
row for each retro statement. In each row, we also indicated (a)
the team that made the statement, (b) the course in which the
team was enrolled, (c) the number of the sprint in which the state-
ment was made, and (d) the prompt ("change/start," "continue," or
"improve/stop") to which the statement responded. While most
statements expressed a single thought or idea, we found a few state-
ments that addressed multiple thoughts or ideas. We partitioned
such statements into multiple segments such that each segment
expressed a single thought or idea.

To address RQ 1 , we conducted a bottom-up thematic anal-
ysis [8] of the statements. Through an iterative process that in-
volved experimentally coding groups of 50 statements based on
their content [21], three of the coauthors gradually converged on a
two-tiered content coding scheme. First, each statement is coded ac-
cording to the primary concern it identifies (see Table 4). Then, each
statement is coded into one or more focus areas that identify where
in the software development cycle the concern lies (see Table 5).

To address RQ 2 , we began with Leijen et al.’s [27] framework
for assessing the quality of reflection. Drawing on Moon’s [33]
distinction between superficial and deep reflection, Leijen et al.’s
framework distinguishes four different levels of reflection based
on the depth of its argumentation. At the most superficial level of
reflection are descriptive statements that simply describe a strategy
that the team took or would like to take. At the second level of
the framework are justified statements that not only describe a
strategy, but also provide a rationale for the strategy grounded in
logic, reason, data, or observation. At the third level are critiqued
statements, which provide a more thorough justification of a strat-
egy by considering at least one pro and one con of the strategy.
Finally, at the deepest level of reflection in the framework are dis-
cussed statements, which differ from critiqued statements in that
they consider the pros and cons of two or more strategies.

After applying this framework to a subset of our corpus, we
decided to make two modifications. First, to emphasize that retro
statements identify general strategies for improving team processes,
we changed the word statement to strategy in the four reflection
levels. Second, we discovered that the framework was unable to
characterize one class of retro statements observed in our corpus—
those that assert a specific fact or observation rather than a general
strategy that can be stopped, continued, or started. An example of
such a statement is "We have assigned Issue #55 to the next sprint."

Because statements like these are not generalizable beyond the
current sprint, they are arguably at at the most superficial level of
reflection. To account for this type of statement, we added a fifth
level (Statement) to the reflection framework, as shown in Table 6.

Using a coding manual with more detailed definitions, examples,
and rules than those shown in the tables, two of the coauthors inde-
pendently coded a 15% sample of our corpus (n = 144 statements),
achieving 93% agreement (Cohen’s Kappa 0.89) on the Concern cat-
egories, 92% agreement (Cohen’s Kappa 0.89) on the Focus Area
categories, and 99% agreement (Cohen’s Kappa 0.97) on the Reflec-
tion Level categories. Having established high inter-rater reliability,
a single analyst coded the remaining statements.

To address RQ 3 , we collected the team-by-team counts of retro
statements coded into each content and reflection level category.
These counts were used as a basis for both statistical analysis and
visual exploration of graphs.

An Empirical Study of the Content andQuality of Sprint Retrospectives in Undergraduate Team Software Projects ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

Table 3: Key Dimensions of Team Software Projects

Project Dimension Course A Course B

Starting Code Base Legacy full-stack web app projects devel-
oped in previous course offerings

Full stack web app project developed in
first part of course

Team Formation Based on CATME survey Self-selected
Team size 5-6 3-5
Project Length (Weeks) 3-4 5
Sprints 2 3
Project Weight 25% of course grade 25% of course grade

Table 4: Definitions of “Concern” Categories

Concern Definition Observed Example(s)

Collaboration

Practice

Focuses on practices, strategies, processes for
collaborating on work. Most prominently, this
includes strategies for delegating and coordinat-
ing work (who does what when).

“Have a mechanism to know who’s reviewing whose

code”

“Schedule daily standups”

“Helping each other out”

“Code in pairs”

Communication

Practice

Focuses on strategies, approaches, and processes
for communicating. Most prominently, this in-
cludes chats, meetings, asking for and receiving
help, communicating status, and asking and an-
swering questions.

“We need to communicate more frequently.”

“We didn’t clarify deadlines when we communicated.”

“Do Daily standups”

“Fast responses on Slack”

“Checking Slack frequently”

Work Practice Focuses on practices, strategies, and processes
for getting work done.

“Procrastinating”

“Optimizing github workflows so that

mutation testing doesn’t take extremely long”

“Reviewing code thoroughly in PRs”

“Better understand the assignment before creating

tickets.”

Learning Practice Focuses on strategies, practices, and processes
for learning or gathering information, including
the target content of such efforts.

“We need to learn MongoDB”

“Stop going straight to the instructor for help

if the answer can be found through other resources”

Camaraderie

Practice

Focuses on strategies,practices, and processes
for building team rapport and camaraderie

“We need kit kats at every meeting.”

‘‘Hold a party at end of each sprint”

None Prompt response is missing or it is stated that
no response is needed.

“We don’t need to change anything”

4 RESULTS

4.1 Retro Content (RQ 1)

Figure 1a shows the percentage of retro statements that fell into
each Concern category. As the figure illustrates, 95% of all retro
statements focused on three concerns:Work Practices (50%), Com-

munication Practices (27%), and Collaboration Practices (18%). The
remaining 5% of the retro statements focused on Learning Practices,
Cameraderie Practices, and None.

Figure 1b classifies retro statements by software development
lifecycle areas. Nearly 30% of the statements focused on “work”
in general, without specifying a specific activity or software engi-
neering artifact. The next most common focus area was commu-
nication (24%), including online (9%), face-to-face (5%), and of an
unspecified nature (10%). Some 19% of statements focused on pull
requests, which encompassed code review, code merging, and re-
solving merge conflicts. Activities involving issues and the Kanban

board were the focus of 9% of the statements. None of the remaining
six focus areas accounted for more than 5% of the statements.

4.2 Reflection Quality (RQ 2)

Figure 1c classifies retro statements based on their reflection qual-
ity. The dominant level of reflection exhibited in retro statements
was Strategy (84.1%), which simply stated a practice to start, stop,
or continue, without providing any justification. Just 13% of retro
statements included some form of justification (Justified Strategy).
Only one statement (0.1%) exhibited a higher form of reflection
(Critiqued Strategy) by identifying at least one pro and one con.
Critiqued Strategy was the highest form of reflection found in our
sample; no retro statements considered the pros and cons of alter-
native strategies (Discussed Strategy). The remaining 2.8% of retro
statements simply stated facts or observations and were classified
as the lowest form of reflection (Statement).

ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Christopher Hundhausen et al.

Table 5: Definition of “Focus Area” Categories

Focus Area Definition Observed Example(s)

General Work Concern focuses on general work, which can be referred
to in a variety of ways, including "tasks," "assignments,"
"blocks," "things," or "issues"

“Start tasks early”

“Staying updated on everyone else’s progress”

“Staying updated on everyone else’s progress”

“Helping each other with their difficulties”

Meetings Concern focuses on meetings (face to face or online) “Being efficient during class time”
“Speaking up in stand-ups”

Online Chat Concern focuses on online chat “Checking Slack more often”

“Giving status updates in Discord”

Unspecified

Communication

Medium

Concern focuses on an unspecified communication meet-
ing (applies only to “Communication Practice”)

“Communicating more often”

“Speaking up when troubles arise”

Coding Concern focuses on coding/computer programming “Writing better comments in code”

“Using appropriate variable names”

Debugging Concern focuses on debugging “Finding bugs prior to the PR”

Testing Concern focuses on testing, continuous integration test-
ing, or quality assurance

“Ensuring broad test coverage”

Integration &

Deployment

Concern focuses on integration and deployment, includ-
ing GitHub work flows

“Making sure UI uses API calls”

Software Product Concern focuses on a software product produced by the
team

“Pay more attention to user interface usability”

Pull Request Concern focuses on pull requests, including code review,
merging code and handling merge conflicts

“Reviewing thoroughly prior to merge”

Issue Concern focuses on issues, including functional or non-
functional requirements, features, user stories, and the
Kanban board.

“Fully implemented the graphic feature in round options”

“Having so many issues in progress at once, at most 1 per

person”

Commit Concern focuses on code commits “Commit more often.”

“Descriptive commit messages”

Revision Control Concern focuses on revision control, including pushing,
pulling, branch management and rebasing, but not merg-
ing or resolving merge conflicts

“Pull code after every PR.”

None Team chooses not to respond to a retro prompt or says
no reponse is needed.

Work Practice
50%

Communicatio
n Practice

27%

None
1%

Collaboration
Practice

18%

Learning
Practice

2%

Cameraderie
Practice

2%

General Work
29.48%

Issue
8.63%

Coding
4.13%

Pull Request
18.64%

Online Chat
9.18%

Testing
4.68%

Meetings
5.42%

Integration & Deployment
0.64%

Unspecified
Communication Medium

9.73%

Debugging
1.29%

Revision Control
3.76%

Commit
2.02%

Software Product
0.18%

None
2.20%

(a) by Concern (b) by Software Dev. Lifecycle Focus Area (c) by Reflection Level

Figure 1: Retro Statements Classified Three Ways

An Empirical Study of the Content andQuality of Sprint Retrospectives in Undergraduate Team Software Projects ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

Table 6: Definition of "Reflection Level" Categories, from Shallowest to Deepest

Reflection Level Definition Observed Examples

Statement Retro statement is not an actionable strategy;
it cannot be started, stopped, continued, or im-
proved

"Issue 55 has been set in TMP 2"

Strategy Retro statement includes an actionable strategy
(something that can be started, stopped, contin-
ued, or improved)

"Start work earlier"

"Add comments to code"

Justified Strategy Retro statement includes an actionable strategy,
together with justification for why the team
wants to stop, continue, improve, or start the strat-
egy. Justification can be logic/reason, evidence for
why the statement is true (data, observation), or
elaboration of the effect of the team’s action or
proposed action.

"Having strict early deadlines for each pull request,

which prevents last minute fiascos"

"Communicating when we get stuck. We often had

bugs that other team members had encountered

already so this helped in reducing debugging time"

Critiqued Strategy Retro statement performs a principled critique of
an actionable strategy. This includes a statement
of at least one pro (strength/advantage) and one
con (weakness/disadvantage)

"Several team members were assigned to multiple

tasks, rather than each member assigned a single

task. We were able to complete tasks faster this way,

while maintaining a level of subject knowledge that

was consistent across the team"

Discussed Strategy Retro statement considers/discusses alterna-
tive/multiple strategies, including pros/cons and
rationale for changes

None observed

4.3 Retro Content and Quality by Team (RQ 3)

Figure 2a presents a stacked bar chart depicting the number of retro
statements coded into each Concern category. Likewise, Figures 2b
and 2c show stacked bar charts for the Focus Area categories and
Reflection Level categories, respectively. In these charts, each team
is represented by a bar whose height corresponds to the number
of retro statements documented by the team. Bar shading is used
to indicate the number of statements coded into each category.
Categories are displayed in the same order (from most common to
least common) in all bars to facilitate direct comparisons of bars.

Inspection of these figures yields four notable observations. First,
while on average, teams documented 30.1 retro statements, they
varied widely with respect to the number of retro statements they
documented (SD = 12.7). Team B7 documented the fewest state-
ments (13), while Team A2-8 documented the most (66). Second,
while visual inspection of the charts suggests similar categorical
patterns across the teams, chi-square tests of homogeneity indicate
that teams’ categorical distributions are significantly different with
respect to Concern (df = 155, 𝜒2 = 655.0, p < 0.001), Focus Area
(df = 403, 𝜒2 = 780.7, p < 0.001), and Reflection Level (df = 93,
𝜒2 = 712.5, p < 0.001). Third, with respect to Reflection Level (see
Figure 2c), Teams B7 and B8 stand out for their extensive use of
Statement—the lowest level of reflection quality used by only five
of the 32 teams in the study. In fact, Team B8 used the Statement

reflection level almost exclusively (14 of 15 statements), indicating
that their retros were nearly devoid of strategies to help them im-
prove their team process. Fourth, and in stark contrast, Teams A1-2
and A1-5 stand out for their extensive use of the Justified Strategy
reflection level. Just under half of Team A1-2’s statements (20 of
43) were at this level, while 40% of Team A1-5’s statements (17 of

42) were at this level. Interestingly, Team A1-2 was the only team
to use the Critiqued Strategy reflection level.

5 DISCUSSION

Our study provides insight into what student software teams focus
on in their retrospectives, how conscientiously they reflect within
those retrospectives; and how retrospectives differ across teams.

5.1 Reflection Content

With respect to retro content, our key finding is that retros focus
overwhelmingly on three areas of concern: work practices, com-

munication practices, and collaboration practices. Together, these
three concerns make up 95% of teams’ retro statements. That teams’
retrospectives tend to focus on their work, collaboration, and com-
munication practices is unsurprising; all of these are central to
the effective functioning of a team, and potential targets for im-
provement through reflection. In contrast, team camaraderie was
relatively rare in retrospectives. While it plays an important role
in the functioning of a team [44], we speculate that teams may
not see a need to reflect on it because it is established through the
day-to-day interactions of the team.

Our Focus Area coding scheme further illuminates the focus of
teams’ retros by linking concerns to specific activities and artifacts
within the software development lifecycle. In this analysis, we found
that the greatest proportion of teams’ retrospective statements (29%)
focused on general work practices (e.g., “Start tasks early,” “Update
team on your progress”). However, substantial portions of teams’
concerns were also concentrated on activities related to communi-
cation (24%), pull requests (19%), coding/testing/debugging (10%),

ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Christopher Hundhausen et al.

0

10

20

30

40

50

60

70

A
1-

1

A
1-

2

A
1-

3

A
1-

4

A
1-

5

A
1-

6

A
1-

7

A
1-

8

A
2-

1

A
2-

2

A
2-

3

A
2-

4

A
2-

5

A
2-

6

A
2-

7

A
2-

8

A
3-

1

A
3-

2

A
3-

3

A
3-

4

A
3-

5

A
3-

6

A
3-

7

A
3-

8

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

N
um

be
r

of
 S

ta
te

m
en

ts

Team ID

Work Practice Communication Practice Collaboration Practice Learning Practice Cameraderie Practice None
(a) Concern of Retro Statements by Team

0

10

20

30

40

50

60

70

80

90

A
1-

1

A
1-

2

A
1-

3

A
1-

4

A
1-

5

A
1-

6

A
1-

7

A
1-

8

A
2-

1

A
2-

2

A
2-

3

A
2-

4

A
2-

5

A
2-

6

A
2-

7

A
2-

8

A
3-

1

A
3-

2

A
3-

3

A
3-

4

A
3-

5

A
3-

6

A
3-

7

A
3-

8

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

N
um

be
r

of
 S

ta
te

m
en

ts

Team ID

General Work Pull Request Communication(Meetings, Online Chat, Unspecified) Issue Coding/Testing/Debugging Other
(b) Focus Area of Retro Statements by Team

0

10

20

30

40

50

60

70

A
1-

1

A
1-

2

A
1-

3

A
1-

4

A
1-

5

A
1-

6

A
1-

7

A
1-

8

A
2-

1

A
2-

2

A
2-

3

A
2-

4

A
2-

5

A
2-

6

A
2-

7

A
2-

8

A
3-

1

A
3-

2

A
3-

3

A
3-

4

A
3-

5

A
3-

6

A
3-

7

A
3-

8

B
1

B
2

B
3

B
4

B
5

B
6

B
7

B
8

N
um

be
r

of
 S

ta
te

m
en

ts

Team ID

Strategy Justified Strategy Statement Critiqued Strategy
(c) Reflection Level of Retro Statements by Team

Figure 2: Retro Content and Quality by Team

An Empirical Study of the Content andQuality of Sprint Retrospectives in Undergraduate Team Software Projects ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

and issues (9%). These suggest key parts of the software develop-
ment lifecycle where students may benefit from additional training
or coaching.

These results align to various degrees with the quantitative re-
sults of three related studies reviewed in Section 2.2. In Gestwicki
and McNely’s [15] analysis, between 60 and 80% of retro statements
focused on collaboration. This is markedly higher than the share of
Collaboration Practice found in our study’s retros; however, Gest-
wicki and McNely’s definition of “collaboration” appears also to
encompass our Work Practice and Communication Practice cate-
gories, suggesting that their results are indeed consistent with ours.
Likewise, Lehtinen et al. [26] found that 49% of retro statements
focused on Implementation Work, closely aligning with our finding
that 50% of retro statements focused onWork Practices. In the study
of Dingsøyer et al. [13], statements classified as Process were most
common, constituting 38% of all statements.

Interestingly, two of the related studies [13, 26] further classified
retro statements based on whether they were positive (i.e., iden-
tified things that were working) or negative/change required (i.e.,
identified things that weren’t working or needed to be changed).
Our data also allows us to perform such a breakdown, since each
retro statement in our corpus responded to one of three prompts
("continue," "change/start," and "improve/stop"). In the two related
studies and ours, a clear majority of retro statements—between 60%
and 71%–were classified as "negative/change," suggesting that, in
retros, teams tend to focus more on things that are not going well.

5.2 Reflection Quality

As mentioned in the Related Work section, prior studies of student
reflections have found they are often superficial (e.g., [9, 17, 31, 39]).
The results of this study bear this out: just 13% of teams’ retro
statements included an explicit rationale for why a practice should
be started, stopped, or continued. This suggests that it would be
helpful for software engineering instructors to experiment with
pedagogical strategies (e.g., prompts) for improving the depth of
students’ reflections. Follow-up studies similar to this one could
then be conducted to determine the extent to which those strategies
are effective. It may also be helpful to find effective ways both
to provide timely formative assessments related to the depth of
students’ reflections, and to incentivize deeper reflection.

5.3 Team Variance

Our team-by-team analysis of retro content and quality revealed
not only wide variance in the number of retro statements produced
by each team, but also statistically significant differences in teams’
categorical distributions of content and quality. On one extreme,
two teams’ retrospectives were nearly devoid of the type of reflec-
tion that could lead to actionable changes in the subsequent sprint.
On the other extreme, over 40 percent of two of the teams’ retros
consisted of strategies that were grounded in a rationale.

We can identify two factors that might account for these stark
differences in teams’ reflection. First, individual differences in teams,
and the members that compose those teams, may have led them to
engage in more, less, shallower, or deeper reflection, and to focus on
different things in their retros. For example, some teams may have
had teammembers with prior experience performing retros, or team

members whowere naturally self-reflective. Likewise, differences in
the software development tasks that teams focused on may have led
them to focus on different things in their retros. Second, we observe
that while students received instructions on how to perform retros,
they did not receive explicit instruction on how to engage in higher
levels of reflection, or on what to focus on in retros. Without such
instruction, perhaps wemight have anticipated wide variance in the
topics on which teams focused, and in their levels of reflection. We
suspect that, with additional guidance, modeling, and coaching (see,
e.g., the framework of [2]), student teams could learn to engage in
deeper reflection in their retros, leading, perhaps, to more effective
team processes and better team outcomes.

6 THREATS TO VALIDITY

6.1 Internal Threats to Validity

One internal threat to the validity of this research arises from study-
ing team retrospectives based solely on teams’ written summaries
of their retros. It could be the case that teams’ written summaries
do not capture the depth and breadth of the reflections in teams’
face-to-face retro meetings. To explore this possibility, we reviewed
the video recordings of a 19% convenience sample of teams’ retro-
spective sessions—a total of 14 recordings submitted by six teams in
Course B. Based on this review, we determined that teams’ face-to-
face retro discussions closely aligned with the written summaries
they handed in. In other words, we failed to find evidence that
statements made in teams’ retro sessions were at a deeper level of
reflection than the statements included in their written summaries.

A second threat to internal validity stems from subtle differences
in the retrospective prompts used in the two courses involved in the
study. In Course A, the three prompts were start, stop and continue.
In course B, the prompts were what went well, what we would like
to improve, and changes we plan to implement in the next milestone

period. Although the two sets of prompts are similar, differences in
the prompts could have led to differences in student teams’ retro
statements. A third threat to internal validity relates to potential
differences in students’ prior experience with retrospectives, which
may have led to differences in the content and quality of teams’
retros. To mitigate this threat, we ideally would have have collected
data on students’ prior experience with retrospectives, and used
that data to help interpret our results.

A fourth threat to internal validity relates to differences in the
student populations enrolled in Courses A and B. As Table 2 in-
dicates, the average age of students in Class A was roughly four
years younger than in Class B. In addition, there may have been
additional differences in the populations—for example, differences
in prior industry experience—that we failed to document. Given the
observed and potential differences between the student populations
studied, caution should be exercised in interpreting the results.

6.2 External Threats to Validity

An external threat to the validity of this study stems from its limited
scope: We considered four offerings of two courses at two North
American universities. The courses in the study could not capture
the range of individual, team, and software project differences that
are present in the general population, including team size, cultural
and linguistic characteristics of teams, and differences in retro

ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal Christopher Hundhausen et al.

formats. While we have made an effort to compare our results to
the existing literature, care must be exercised in any attempt to
generalize our findings beyond the population we studied.

7 SUMMARY AND FUTUREWORK

This paper has presented an analysis of the content and quality of
72 retros performed by 32 teams in four offerings of undergraduate
software engineering courses. We have found that teams reflected
most often on their work, communication, and collaboration prac-
tices. An analysis of the quality of teams’ retros reflections showed
that only 13% provided justification for a strategy to be stopped,
continued, or started. In addition, the content and quality or retro
statements varied significantly by team.

Our results, which align with the general themes of previous
studies of retros, suggest at least two directions for future research.
First, while our study shed light on the content and quality of ret-
rospective reflections, future work should identify links between
retrospective reflections and concrete changes in teams’ processes
and products. Second, given the wide variance observed in teams’
retrospectives, future work should explore the impact of pedagog-
ical interventions aimed at getting students to reflect deeply on
their processes, implement meaningful changes, and document the
impacts of those changes on team processes and products.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under
grant nos. 1915196 and 1915198.

REFERENCES

[1] R. R. Adisurya, H. B. Santoso, S. Fadhilah, and O. Lawanto. 2020. Information
visualization of metacognitive skills during the software development process
based on an adapted engineering design metacognitive questionnaire. Journal of
Physics: Conference Series 1566, 1 (June 2020), 012078. https://doi.org/10.1088/
1742-6596/1566/1/012078 Publisher: IOP Publishing.

[2] Yanti Andriyani, Rashina Hoda, and Robert Amor. 2017. Reflection in Agile
Retrospectives. In Agile Processes in Software Engineering and Extreme Program-

ming (Lecture Notes in Business Information Processing), Hubert Baumeister, Horst
Lichter, and Matthias Riebisch (Eds.). Springer International Publishing, Cham,
3–19. https://doi.org/10.1007/978-3-319-57633-6_1

[3] Jeffry Babb, Rashina Hoda, and Jacob Nørbjerg. 2014. Embedding Reflection and
Learning into Agile Software Development. IEEE Software 31, 4 (2014), 51–57.
https://doi.org/10.1109/MS.2014.54

[4] Andrew Begel and Beth Simon. 2008. Novice software developers, all over again.
In Proceedings of the Fourth international Workshop on Computing Education

Research (ICER ’08). ACM, New York, NY, USA, 3–14. https://doi.org/10.1145/
1404520.1404522

[5] Andrew Begel and Beth Simon. 2008. Struggles of new college graduates in
their first software development job. In Proceedings of the 39th SIGCSE technical

symposium on Computer science education (SIGCSE ’08). ACM, New York, NY,
USA, 226–230. https://doi.org/10.1145/1352135.1352218

[6] Elizabeth Bjarnason and Björn Regnell. 2012. Evidence-Based Timelines for
Agile Project Retrospectives – A Method Proposal. In Agile Processes in Software

Engineering and Extreme Programming (Lecture Notes in Business Information

Processing), Claes Wohlin (Ed.). Springer, Berlin, Heidelberg, 177–184. https:
//doi.org/10.1007/978-3-642-30350-0_13

[7] Matt Bower and Debbie Richards. 2006. Collaborative learning: Some possibilities
and limitations for students and teachers. In 23rd Annual Conference of the Aus-

tralasian Society for Computers in Learning in Tertiary Education: Whos Learning.
Sydney University Press, Sydney, Australia, 79–89.

[8] Virginia Braun and Victoria Clarke. 2006. Using thematic analysis in psychology.
Qualitative Research in Psychology 3, 2 (2006), 77–101. https://doi.org/10.1191/
1478088706qp063oa Place: United Kingdom Publisher: Hodder Arnold.

[9] Christopher N Bull and Jon Whittle. 2014. Supporting reflective practice in
software engineering education through a studio-based approach. IEEE software

31, 4 (2014), 44–50.
[10] Håkan Burden and Jan-Philipp Steghöfer. 2019. Teaching and Fostering Reflection

in Software Engineering Project Courses. In Agile and Lean Concepts for Teaching

and Learning. Springer Nature Singapore Pte Ltd., Singapore, 231–262.
[11] Aino Corry. 2020. Retrospectives Antipatterns. Addison-Wesley, Boston.
[12] Derby, E. and Larsen, D. 2006. Agile Retrospectives: Making Good Teams Great.

Pragmatic Bookshelf, Dallas.
[13] Torgeir Dingsøyr, Marius Mikalsen, Anniken Solem, and Kathrine Vestues. 2018.

Learning in the Large - An Exploratory Study of Retrospectives in Large-Scale
Agile Development. In Agile Processes in Software Engineering and Extreme Pro-

gramming (Lecture Notes in Business Information Processing), Juan Garbajosa,
Xiaofeng Wang, and Ademar Aguiar (Eds.). Springer International Publishing,
Cham, 191–198. https://doi.org/10.1007/978-3-319-91602-6_13

[14] Tore Dybå, Neil Maiden, and Robert Glass. 2014. The Reflective Software Engineer:
Reflective Practice. IEEE Software 31, 4 (2014), 32–36. https://doi.org/10.1109/
MS.2014.97

[15] Paul V. Gestwicki and Brian J. McNely. 2013. Empirical Evaluation of Periodic
Retrospective Assessment. In Proceeding of the 44th ACM Technical Symposium on

Computer Science Education (SIGCSE ’13). Association for Computing Machinery,
New York, NY, USA, 699–704. https://doi.org/10.1145/2445196.2445399 event-
place: Denver, Colorado, USA.

[16] Orit Hazzan. 2002. The reflective practitioner perspective in software engineering
education. Journal of Systems and Software 63, 3 (2002), 161–171.

[17] Christopher Hundhausen, Phill Conrad, Olusola Adesope, Ahsun Tariq, Samir
Sbai, and Andrew Lu. 2023. Investigating Reflection in Undergraduate Software
Development Teams: An Analysis of Online Chat Transcripts. In Proceedings of

the 54th ACM Technical Symposium on Computer Science Education V. 1 (Toronto
ON, Canada) (SIGCSE 2023). Association for Computing Machinery, New York,
NY, USA, 743–749. https://doi.org/10.1145/3545945.3569790

[18] Robert F. Dugan Jr. 2011. A survey of computer science capstone course litera-
ture. Computer Science Education 21, 3 (2011), 201–267. https://doi.org/10.1080/
08993408.2011.606118 arXiv:https://doi.org/10.1080/08993408.2011.606118

[19] An Ju, Adnan Hemani, Yannis Dimitriadis, and Armando Fox. 2020. What Agile
Processes Should We Use in Software Engineering Course Projects?. In Pro-

ceedings of the 51st ACM Technical Symposium on Computer Science Education

(SIGCSE ’20). Association for ComputingMachinery, New York, NY, USA, 643–649.
https://doi.org/10.1145/3328778.3366864

[20] Norman L. Kerth. 2001. Project Retrospectives: A Handbook for Team Reviews.
Dorset House, New York.

[21] K. Krippendorff. 1980. Content analysis: an introduction to its methodology. Sage
Publications, Beverly Hills.

[22] Deanna Kuhn and David Dean, Jr. 2004. Metacognition: A bridge between
cognitive psychology and educational practice. Theory into practice 43, 4 (2004),
268–273.

[23] Marilyn Lamoreux. 2005. Improving agile team learning by improving team re-
flections [agile software development]. In Agile Development Conference (ADC’05).
IEEE, IEEE, Denver, CO, 139–144.

[24] Richard Layton, Matthew Ohland, and Hal R Pomeranz. 2007. Software for
Student Team Formation and Peer Evaluation: CATME Incorporates Team-
Maker. In 2007 Annual Conference & Exposition. ASEE, Honolulu, Hawaii, 12–
1286. https://peer.asee.org/software-for-student-team-formation-and-peer-
evaluation-catme-incorporates-team-maker

[25] Madhavi Ledalla. 2020. Retrospectives for everyone: Powerful metaphors for effective

retrospectives. Notion Press, Chennai, India.
[26] Timo O. A. Lehtinen, Juha Itkonen, and Casper Lassenius. 2017. Recurring

opinions or productive improvements—what agile teams actually discuss in
retrospectives. Empirical Software Engineering 22, 5 (Oct. 2017), 2409–2452.
https://doi.org/10.1007/s10664-016-9464-2

[27] Äli Leijen, Kai Valtna, Djuddah A.J. Leijen, and Margus Pedaste. 2012. How to
determine the quality of students’ reflections? Studies in Higher Education 37, 2
(March 2012), 203–217. https://doi.org/10.1080/03075079.2010.504814 Publisher:
Routledge.

[28] Marc Loeffler. 2018. Improving Agile Retrospectives: Helping Teams Become More

Efficient. Addison-Wesley, Boston.
[29] Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny,

Raymond Pettit, and James Prather. 2021. Metacognition and Self-Regulation in
Programming Education: Theories and Exemplars of Use. ACM Trans. Comput.

Educ. TBD, TBD (dec 2021), 1–30. https://doi.org/10.1145/3487050 Just Accepted.
[30] Robert Cecil Martin. 2003. Agile Software Development: Principles, Patterns, and

Practices. Prentice Hall PTR, USA.
[31] Roger McDermott, Mats Daniels, Åsa Cajander, Mats Cullhed, Tony Clear, and

Cary Laxer. 2012. Student reflections on Collaborative Technology in a globally
distributed student project. In 2012 Frontiers in Education Conference Proceedings.
IEEE, Seattle, WA, 1–6. https://doi.org/10.1109/FIE.2012.6462410

[32] Janet Metcalfe and Arthur P. Shimamura (Eds.). 1994. Metacognition: Knowing

about knowing. The MIT Press, Cambridge, MA, US. https://doi.org/10.7551/
mitpress/4561.001.0001 Pages: xiii, 334.

[33] Moon, J.A. 2004. Reflection in Learning and Professional Development. Routledge-
Falmer, New York.

[34] Thomas O Nelson and Louis Narens. 1994. Why investigate metacognition.
Metacognition: Knowing about knowing 13 (1994), 1–25.

https://doi.org/10.1088/1742-6596/1566/1/012078
https://doi.org/10.1088/1742-6596/1566/1/012078
https://doi.org/10.1007/978-3-319-57633-6_1
https://doi.org/10.1109/MS.2014.54
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/1352135.1352218
https://doi.org/10.1007/978-3-642-30350-0_13
https://doi.org/10.1007/978-3-642-30350-0_13
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1191/1478088706qp063oa
https://doi.org/10.1007/978-3-319-91602-6_13
https://doi.org/10.1109/MS.2014.97
https://doi.org/10.1109/MS.2014.97
https://doi.org/10.1145/2445196.2445399
https://doi.org/10.1145/3545945.3569790
https://doi.org/10.1080/08993408.2011.606118
https://doi.org/10.1080/08993408.2011.606118
https://arxiv.org/abs/https://doi.org/10.1080/08993408.2011.606118
https://doi.org/10.1145/3328778.3366864
https://peer.asee.org/software-for-student-team-formation-and-peer-evaluation-catme-incorporates-team-maker
https://peer.asee.org/software-for-student-team-formation-and-peer-evaluation-catme-incorporates-team-maker
https://doi.org/10.1007/s10664-016-9464-2
https://doi.org/10.1080/03075079.2010.504814
https://doi.org/10.1145/3487050
https://doi.org/10.1109/FIE.2012.6462410
https://doi.org/10.7551/mitpress/4561.001.0001
https://doi.org/10.7551/mitpress/4561.001.0001

An Empirical Study of the Content andQuality of Sprint Retrospectives in Undergraduate Team Software Projects ICSE-SEET ’24, April 14–20, 2024, Lisbon, Portugal

[35] Yen Ying Ng, Jędrzej Skrodzki, and Maciej Wawryk. 2020. Playing the sprint
retrospective: a replication study. In Advances in Agile and User-Centred Software

Engineering: Third International Conference on Lean and Agile Software Devel-

opment, LASD 2019, and 7th Conference on Multimedia, Interaction, Design and

Innovation, MIDI 2019, Leipzig, Germany, September 1–4, 2019, Revised Selected

Papers 3. Springer, Leipzig, Germany, 133–141.
[36] M.J. O’Grady. 2012. Practical Problem-Based Learning in Computing Educa-

tion. Trans. Comput. Educ. 12, 3 (July 2012), 10:1–10:16. https://doi.org/10.1145/
2275597.2275599

[37] Daniela Pedrosa, Mario Madureira Fontes, Tânia Araújo, Ceres Morais, Teresa
Bettencourt, Pedro Duarte Pestana, Leonel Morgado, and José Cravino. 2021.
Metacognitive challenges to support self-reflection of students in online Software
Engineering Education. In 2021 4th International Conference of the Portuguese

Society for Engineering Education (CISPEE). CISPEE, Lisbon, Portugal, 1–10. https:
//doi.org/10.1109/CISPEE47794.2021.9507230

[38] James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa,
and Lauren Margulieux. 2020. What Do We Think We Think We Are Do-
ing? Metacognition and Self-Regulation in Programming. In Proceedings of

the 2020 ACM Conference on International Computing Education Research (Vir-
tual Event, New Zealand) (ICER ’20). ACM, New York, NY, USA, 2–13. https:
//doi.org/10.1145/3372782.3406263

[39] Julia Prior, Samuel Ferguson, and John Leaney. 2016. Reflection is Hard: Teaching
and Learning Reflective Practice in a Software Studio. In Proceedings of the

Australasian Computer Science Week Multiconference (Canberra, Australia) (ACSW
’16). Association for ComputingMachinery, New York, NY, USA, Article 7, 8 pages.

https://doi.org/10.1145/2843043.2843346
[40] Adam Przybyłek, Marta Albecka, Olga Springer, and Wojciech Kowalski. 2021.

Game-based Sprint retrospectives: multiple action research. Empirical Software

Engineering 27, 1 (Oct. 2021), 1. https://doi.org/10.1007/s10664-021-10043-z
[41] Adam Przybyłek and Dagmara Kotecka. 2017. Making agile retrospectives more

awesome. In 2017 Federated Conference on Computer Science and Information

Systems (FedCSIS). IEEE, Prague, Czech Republic, 1211–1216. https://doi.org/10.
15439/2017F423

[42] D. Schön. 1983. The reflective practitioner: How professionals think in action. Basic
Books, New York.

[43] J.E. Sims-Knight and R.L. Upchurch. 1998. The acquisition of expertise in software
engineering education. In FIE ’98. 28th Annual Frontiers in Education Conference.

Moving from ’Teacher-Centered’ to ’Learner-Centered’ Education. Conference Pro-

ceedings (Cat. No.98CH36214), Vol. 3. IEEE, Tempe, AZ, USA, 1302–1307 vol.3.
https://doi.org/10.1109/FIE.1998.738679

[44] Tuckman, B.W. 1965. Developmental Sequence in Small groups. Psychological
Bulletin 63, 6 (1965), 384–399. https://doi.org/10.1037/h0022100

[45] Maciej Wawryk and Yen Ying Ng. 2019. Playing the sprint retrospective. In 2019

federated conference on computer science and information systems (fedcsis). IEEE,
Leipzig, Germany, 871–874.

[46] Tingting Yang and Ikseon Choi. 2023. Reflection as a social phenomenon: a
conceptual framework toward group reflection research. Educational technology
research and development 71, 2 (2023), 237–265. https://doi.org/10.1007/s11423-
022-10164-2 Place: New York Publisher: Springer US.

https://doi.org/10.1145/2275597.2275599
https://doi.org/10.1145/2275597.2275599
https://doi.org/10.1109/CISPEE47794.2021.9507230
https://doi.org/10.1109/CISPEE47794.2021.9507230
https://doi.org/10.1145/3372782.3406263
https://doi.org/10.1145/3372782.3406263
https://doi.org/10.1145/2843043.2843346
https://doi.org/10.1007/s10664-021-10043-z
https://doi.org/10.15439/2017F423
https://doi.org/10.15439/2017F423
https://doi.org/10.1109/FIE.1998.738679
https://doi.org/10.1037/h0022100
https://doi.org/10.1007/s11423-022-10164-2
https://doi.org/10.1007/s11423-022-10164-2

	Abstract
	1 Introduction
	2 Related Work
	2.1 Reflection in Software Engineering and Software Engineering Education
	2.2 Studying and Promoting Reflection in Software Engineering Education
	2.3 Studying Agile Retros

	3 Methods
	3.1 Courses and Participants
	3.2 Materials and Procedure
	3.3 Data Collection and Analysis

	4 Results
	4.1 Retro Content (RQ1)
	4.2 Reflection Quality (RQ2)
	4.3 Retro Content and Quality by Team (RQ3)

	5 Discussion
	5.1 Reflection Content
	5.2 Reflection Quality
	5.3 Team Variance

	6 Threats to Validity
	6.1 Internal Threats to Validity
	6.2 External Threats to Validity

	7 Summary and Future Work
	Acknowledgments
	References

