Check for
Updates

Investigating Reflection in Undergraduate Software Development
Teams: An Analysis of Online Chat Transcripts

Christopher Hundhausen Phill Conrad Olusola Adesope
chris.hundhausen@oregonstate.edu phtcon@ucsb.edu olusola.adesope@wsu.edu
Oregon State University UC Santa Barbara Washington State University
Corvallis, Oregon, USA Santa Barbara, California, USA Pullman, Washington, USA
Ahsun Tariq Samir Sbai Andrew Lu
tariqa@oregonstate.edu samir.sbai@wsu.edu alu@ucsb.edu

Oregon State University, Corvallis
Oregon, USA

ABSTRACT

Metacognition is widely acknowledged as a key soft skill in col-
laborative software development. The ability to plan, monitor, and
reflect on cognitive and team processes is crucial to the efficient
and effective functioning of a software team. To explore students’
use of reflection—one aspect of metacognition—in undergraduate
team software projects, we analyzed the online chat channels of
teams participating in agile software development projects in two
undergraduate courses that took place exclusively online (n = 23
teams, 117 students, and 4,915 chat messages). Teams’ online chats
were dominated by discussions of work completed and to be done;
just two percent of all chat messages showed evidence of reflection.
A follow-up analysis of chat vignettes centered around reflection
messages (n = 63) indicates that three-fourths of the those messages
were prompted by a course requirement; just 14% arose organically
within the context of teams’ ongoing project work. Based on our
findings, we identify opportunities for computing educators to in-
crease, through pedagogical and technological interventions, teams’
use of reflection in team software projects.

CCS CONCEPTS

« Software and its engineering — Programming teams; « So-
cial and professional topics — Software engineering educa-
tion; - Human-centered computing — Computer supported
cooperative work.

KEYWORDS

team software projects, software engineering, software engineering
education, metacognition, reflection, content analysis, agile

ACM Reference Format:

Christopher Hundhausen, Phill Conrad, Olusola Adesope, Ahsun Tarigq,
Samir Sbai, and Andrew Lu. 2023. Investigating Reflection in Undergraduate
Software Development Teams: An Analysis of Online Chat Transcripts.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

SIGCSE °23, March 15-18, 2023, Toronto, ON, Canada.

© 2023 Association for Computing Machinery.

ACM ISBN 978-1-4503-9431-4/23/03...$15.00
https://doi.org/10.1145/3545945.3569790

Washington State University, Pullman
Washington, USA

743

UC Santa Barbara, Santa Barbara
California, USA

In Proceedings of the 54th ACM Technical Symposium on Computer Science
Education V. 1 (SIGCSE 2023), March 15-18, 2023, Toronto, ON, Canada. ACM,
New York, NY, USA, 7 pages. https://doi.org/10.1145/3545945.3569790

1 INTRODUCTION

Undergraduate computing students benefit greatly from team soft-
ware development projects; these are crucial to enabling them to
develop the skills needed to succeed in the software profession.
While undergraduate computing students typically acquire ade-
quate training in technical (coding) skills, studies of professional
software development suggest that they may possess deficiencies
in soft skills (e.g., communication, collaboration) when they enter
new jobs in the profession [5, 14, 42]. This suggests the need to
develop more effective pedagogical approaches for team software
development projects that emphasize training in soft skills.

Metacognition is widely acknowledged as a key soft skill in col-
laborative software development [2, 38, 45]. Metacognition encom-
passes the ability to plan, monitor, and reflect on cognitive and
team processes. It is crucial to the effective functioning of a soft-
ware team [43]. It enables a team to adapt not only to the changing
requirements and ill-structured nature of software development
projects, but also to the strengths and interests of team members.

For software teams, reflection—assessing the team’s process to
determine what is working, what is not working, and what changes
could be made—is a particularly important aspect of metacognition.
The Agile development approach is emphatic about the need for
software teams to reflect regularly on their process, and prescribes
the retrospective as a structured way for teams to do this [4].

The importance of reflection in team software development—and
the need to develop effective pedagogical approaches to promote
reflection—leads to the following research question:

RQ: To what extent do student software teams demonstrate
reflection as part of their process?

We present an exploratory analysis of the use of reflection in
the online chats of undergraduate teams engaged in software de-
velopment projects. We focus on the required team projects of two
undergraduate courses conducted completely online during the
pandemic at two large North American research universities (n
= 23 teams, 117 students). To explore our research question, we
performed a content analysis of the students teams’ chat channels

https://doi.org/10.1145/3545945.3569790
https://doi.org/10.1145/3545945.3569790
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3545945.3569790&domain=pdf&date_stamp=2023-03-03

SIGCSE 23, March 15-18, 2023, Toronto, ON, Canada.

(n = 4,915 messages). To gain further insight into how and why re-
flection emerged in these chats, we conducted a follow-up analysis
of the chat vignettes in which reflection messages were embedded.
Our results indicate that explicit reflection was a rarity in teams’
online chats: on average, just two percent of teams’ chat messages
showed evidence of reflection. Moreover, 76% of the chat messages
with reflective content were prompted by course requirements; only
14% arose organically through teams’ ongoing software develop-
ment activities. We consider the implications of these results for the
design of pedagogical and technological interventions to encourage
greater use of reflection in team software development projects.

2 RELATED WORK
2.1 Soft Skills in Computing

Soft skills (e.g. communication, collaboration, teamwork) are widely
acknowledged to be essential in the software profession [29]. Yet,
numerous studies have shown a deficit of these skills in graduates
of undergraduate computing programs [5, 6, 12, 14, 37, 42].

Given their importance, computing educators and researchers
have explored many approaches to teaching soft skills (see [25] for
a review). While some approaches target specific soft skills such as
creativity [35], communication [8], or teamwork [23], others aim
for more comprehensive training in a variety of soft skills [22, 27].
Likewise, while some soft skills training has been embedded in
capstone design courses [1, 13] educators have explored soft skills
training in other venues, including courses in game design [9] and
even entire courses dedicated to soft skills [27].

Soft skills prove particularly challenging to evaluate due to their
subjective nature. Computing educators have traditionally relied
on some combination of peer evaluations [33] and instructor assess-
ment. There have also been systematic efforts to develop structured
soft skills metrics and rubrics [10, 18, 28, 41]. Our work contributes
to broader efforts to integrate soft skills training and evaluation
into computing education by studying students use of a particular
soft skill (reflection) in course activities and considering ways that
students’ use of the skill might be prompted.

2.2 Reflection in Software Development

Reflection refers to the practice of assessing one’s processes, behav-
iors, and progress relative to goals, with an eye toward identifying
improvements to be made. Schon [44] distinguishes between two
key forms of reflection: reflection-in-action, in which one assesses
one’s practices while in the midst of performing them; and reflection-
on-action, in which one assesses one’s practices after the fact. Our
analysis focuses on the latter.

Reflection is widely recognized as a hallmark of professional de-
sign and engineering practice [44]. Professional software engineers
have been interested in adopting reflective practices [20], while
researchers have explored tools and techniques to promote reflec-
tion in the software engineering process (e.g., [7]). In computing
education, researchers have performed detailed investigations of
the use of reflection in student software development (e.g., [19])
and explored pedagogical approaches to promote reflection, with
a particular emphasis on studio-based learning [11, 26]. Our work
contributes to this line of work by investigating the use of reflection

744

Christopher Hundhausen et al.

in student software teams’ chat channels and considering ways to
promote reflective practice in undergraduate team projects.
Reflection is a key component of the more general practice of
metacognition, which encompasses planning, monitoring, and re-
flecting on thinking and behavior [36]. Widely studied in computing
education [34, 39], metacognition has been shown to be a crucial
soft skill in professional software development [2, 38, 45]. Moreover,
it has been identified as being particularly deficient in studies of new
software developers in industry [5, 6]. By studying student teams’
use of reflection and how it arises in the software development
process, our work aims to contribute to addressing this deficiency
through improved pedagogical and technological interventions.

2.3 Studying Software Team Communication

This study performs a content analysis [31] of the online chat com-
munications of virtual teams engaged in software development
projects. In the field of software engineering, a large body of re-
search has studied software team communication; see [17] for a
comprehensive review. A few of these studies have, like us, per-
formed content analyses of team chats to better understand team
communication and find evidence of best practices (e.g., [3]). How-
ever, ours is the first study, to our knowledge, to investigate software
team chat communications for evidence of reflection.

In a similar vein, the field of computer-supported collaborative
learning (CSCL) is interested in understanding collaborative learn-
ing through analyses of group communications [40]. To analyze
communication in our study, we draw on an influential theoretical
framework developed through this work: social interdependence the-
ory [16], which holds that positive interdependence in collaborative
learning is characterized by the following behaviors:

o help-giving and help-seeking

e giving and receiving feedback

e challenging and encouraging each other
e jointly reflecting on progress and process

Based on this theoretical framework, Curtis and Lawson [15]
created a content coding scheme to analyze chat transcripts in on-
line collaborative learning. Swigger et al. [46] demonstrated the
value of this coding scheme in analyzing software team communi-
cation. Given the presence of reflection in the framework and its
demonstrated utility in studies of software teams, we adopted it as
a foundation for the coding scheme used in this study.

3 METHODS

3.1 Courses and Participants

This study occurs in the context of two courses offered completely
online during the Covid-19 pandemic in academic year 20-21:

Course A (“Advanced Application Development”) was taught
by the second author at UC Santa Barbara, a large North Ameri-
can research university. It is a 10 week course taken primarily by
second and third year undergraduate computer science majors. It
focuses on the development of full-stack web applications through
a team project lasting the duration of the term. The course empha-
sizes both technical skills and soft skills related to Agile practices
(standups, sprints, Kanban, user stories, acceptance criteria) and
GitHub workflows (pull requests, code reviews).

Investigating Reflection in Undergraduate Software Development Teams: An Analysis of Online Chat Transcripts

Course B (“Web Development”) was taught by the first author
at Washington State University. It is a 15 week advanced under-
graduate course in full-stack web development. During the first
10 weeks, students learn web programming through lectures, live
coding demos, and a series of individual assignments that build
upon each other to produce a full-stack web app. In the final five
weeks, students form teams and apply what they have learned
to build a full stack web app of their choice. As part of the team
project curriculum, students learn about the same Agile practices
and GitHub workflows emphasized in Course A.

Both courses took place during the pandemic and were conducted
completely online. Class meetings were held synchronously through
Zoom. Outside of class meetings, students engaged with online
learning materials and communicated via online communication
tools both synchronously and asynchronously.

Table 1 presents demographic data on study participants. The
study involved three separate offerings of Course A and one offering
of Course B. The study was approved by the Institutional Review
Boards of each university; students could opt in to the study by
signing an informed consent form. For a team’s chat data to be
included in the study, all team members had to consent. As shown
in Table 1, in the four courses involved in this study, all members
of 23 of the 46 teams (n=117 students) consented to participate.

Table 1: Study Demographics

Course Teams | Students Teams Students Consentlrﬁean
Enrolled | Enrolled | Consenting | n | M | F | U Age
Al 12 66 7 38 30 | 8 0 19.9
A2 10 54 2 9 9 0 0 20.7
A3 12 64 11 8 3 0 19.7
B 12 59 12 59 | 50| 4 |5 23.3
Total 46 243 23 117 | 97 | 15 | 5 | 20.05

3.2 Materials: Team Project

Table 2 presents information about the team software development
projects in each course. In Course A, teams of up to six members
were formed through a CATME team-building survey [32] and
then randomly assigned to a legacy code project that had been
developed by students in previous course offerings. In contrast,
students in Course B were given the option of proposing their own
web development project or choosing from a list of pre-approved
projects. Students were asked to form their own teams of three
to five students; students who did not sign up for a team were
randomly assigned to teams that had openings available In both
courses, student teams were given starter code—either the code
base from a legacy code project (Course A), or a code base from a
demo project developed in the first part of the course (Course B).

Teams in both courses undertook projects of three to five weeks,
split up into three to four sprint cycles. Students used GitHub as
their source code repository, along with GitHub issues and project
boards to monitor and track their development activities. In addi-
tion, teams used channels in either Slack (Course A) or Microsoft
Teams (Course B) for online chat communications.

Each course utilized these channels slightly differently. In Course
B, student teams used their Microsoft Teams channels exclusively
for collaboration on the team project; the instructor had access to
the channels, but posted to them only to answer questions when

745

SIGCSE 23, March 15-18, 2023, Toronto, ON, Canada.

explicitly tagged by a team member. In contrast, student teams in
Course A used their Slack channels both for team collaboration,
and to respond to discussion prompts in some course assignments.

Student teams in both courses were expected to employ sound
agile software engineering practices emphasized in each course, in-
cluding the use of issues, Kanban (project) boards, feature branches,
pull requests, code reviews, automated tests, and retrospectives.
However, grading of students and teams differed significantly be-
tween the two courses. In Course A, teams were awarded a grade
based on the number of story points they completed during the
term, with teaching personnel determining the story point values
of each team’s completed issues. In contrast, teams in Course B
were graded based on a structured rubric, which the instructor used
to perform a detailed evaluation of teams’ GitHub repositories, chat
channels, and deployed software. Individual grades were computed
from team grades by applying individual multipliers derived from
peer evaluation surveys [32] administered after each sprint.

3.3 Data Collection and Analysis

Teams’ chat messages were collected through Slack (Course A)
and Microsoft Teams (Course B). At the end of each course, we
exported all teams’ chat channel messages to a spreadsheet for
analysis—one message per row. The original corpus included 6,811
messages (posts and replies). To keep the focus of the analysis on
team communications surrounding their software development
activities, we eliminated from the original corpus messages posted
by non-student participants (teaching staff and bots). In addition,
in Course A, class assignments occasionally gave student teams
participation credit to engage in chat channel discussions that were
not directly related to their software projects. We also eliminated
the messages prompted by those assignments. After eliminating
these messages, we arrived at a corpus of 4,915 messages.

We used the coding scheme of Curtis and Lawson [15] as a start-
ing point for our content analysis. Through preliminary efforts
to categorize our chat messages using the framework’s five cate-
gories (PLANNING, CONTRIBUTING, SEEKING INPUT, REFLECTION,
and SocIAL INTERACTION), we changed the categories as follows:

e PLANNING was renamed to PLANNING/COORDINATION to
capture episodes in which team members either plan or
coordinate joint activities.

e SEEKING INPUT was renamed to SEEKING TECHNICAL INFO
& ASSISTANCE to capture team members’ efforts not only
to obtain technical (e.g., coding or tool) information, but
also to solicit assistance in addressing technical questions or
problems.

e EMOTIONAL RESPONSE was added to capture team members’
expressions of gratitude, regret, appreciation, pride, and ac-
knowledgment of others’ work—expressions that were not in-
cluded in the original framework of Curtis and Lawson [15].

Table 3 presents our modified content coding scheme. Messages
were coded into multiple categories when applicable, and in the
order in which they were originally posted, so that context could be
considered. Through multiple iterations of coding small samples of
messages and discussing the results, we gradually refined a coding
manual that clarifies the coding categories through detailed exam-
ples and guidelines. Using that manual, two analysts independently

SIGCSE 23, March 15-18, 2023, Toronto, ON, Canada.

Christopher Hundhausen et al.

Table 2: Key Dimensions of Team Projects

Project Dimension Course A Course B
Project Focus Existing legacy code projects Self-selected with option to choose from list of recommended projects
Team Formation Based on CATME survey, teams randomly assigned to projects | Self-selected; unassigned students randomly assigned to teams
Team size 5-6 3-5
Starting code base Code base from existing project Code base from full stack app developed in first part of course
Project Length (Weeks) 3-4 5
Collaboration Tools Used | GitHub, Slack GitHub, Microsoft Teams
Number of sprints 3 4
Table 3: Definitions of Content Categories
Category/Code Definition Examples
Asking a question or making a statement/proposal about how “Can you meet tomorrow at 10 am?”
PLANNING/ P the team should organize or coordinate its work: “Let’s break this user story into two.”
COORDINATION What'’s in scope/out of scope, who is on the team, “Should we break this user story into two?”
who does what, in what order, and when, etc. “Jon, can you do the pull request for that issue?”
Providing information, stating opinions, asking questions, “T have created a PR for that issue.”
CONTRIBUTING C . . . P »
answering questions, or performing work. 1 think you need to refactor that code’
Seeking technical information and assistance regarding « . »
. . Are there examples of peer reviews?
SEEKING TECHNICAL programming, software architecture, development tools « M
S . . . e How do I get access to the database?
INFO & ASSISTANCE (e.g., Visual Studio Code, GitHub), communication tools (e.g., Slack), « . , »
. Can you help me with Slack’s attachment feature?
and software development processes (e.g., how retrospectives work).
Reflecting on or assessing individual or team processes “I could have done that differently.”
REFLECTION R | and strategies. May suggest what to stop doing, start doing, or “All of us working on this isn’t a good use of time.”
continue doing, but does not include a definite timeline for changes. “I think it’s really worth reevaluating our priorities.”
SociaL Asking about or sharing personal information unrelated to the group | Sharing of a meme or joke
INTERACTION task for the purpose of building social relationships. Personal introductions
EMoTIONAL . . . « : : »
RESPONSE E | Expressing gratitude or acknowledging the work of others. Great job fixing that bug!

coded a 14% sample of our corpus (n = 692). The analysts achieved
89% overall agreement, with a Cohen’s Kappa value of 0.84. Having
established high inter-rater reliability, the two analysts each coded
half of the remaining messages.

To better understand teams’ use of reflection, we performed a
follow-up analysis of chat vignettes that included messages coded
as REFLECTION. For this analysis, we considered all REFLECTION
messages (n=63) and the five messages that preceded and followed
them. This yielded a corpus of 358 messages.

In the first pass of the follow-up analysis, we used the surround-
ing context of each REFLECTION message to derive the five cat-
egories described in Table 4. These categories identify what we
observed to have prompted the REFLECTION messages. In a second
pass, we coded each REFLECTION message into one of those cate-
gories. Since the corpus of REFLECTION messages was relatively
small (n=63), we opted not to verify inter-rater reliability. Instead,
we had three of the authors code all messages independently, com-
pare results, and resolve disputes through further discussion.

4 RESULTS
4.1 Message Content

On average, each team posted 214 messages to their chat channels
(SD = 162) during the project. Figure 1 presents a stacked bar chart
comparing message content by team. Bars are shaded to indicate
the percentage of messages in each category. Although Figure 1
seems to show a similar categorical pattern across all teams, a

746

Table 4: Definitions of Prompt Categories

Definition

Prompted by a course require-
ment such as the need to perform
a retrospective

Category/Code
COURSE REQUIREMENT | R

TEAM ACTIVITY A | Prompted by the team’s naturally
occuring software development
activities

PRESENTING DEMO D Prompted by presenting a re-
quired software demo

RECEIVING GRADE G Prompted by receiving a team

project grade

chi-squared test of homogeneity indicates that teams differed sig-
nificantly with respect to the categorical distribution of their chat
messages (df = 110, y? = 554.3, p < 0.001).

Visual inspection of Figure 1 shows that across all teams, online
chats were dominated by two content categories: CONTRIBUTION
(M = 43%, SD = 11%) and PLANNING/COORDINATION (M = 43%,
SD = 11%). This suggests that teams tended to appropriate their
team chat channels to plan and coordinate their collaboration on
the project, and to update each other on their progress.

Of the remaining 14% of teams’ chat messages, 10% were divided
between EMOTIONAL RESPONSE (M = 5%, SD = 2%) and SocIAL IN-
TERACTION (M = 5%, SD = 4%). These types of messages served to
build team rapport and camaraderie by sharing personal informa-
tion, injecting humor into the process, and expressing empathy and
understanding for each others’ situations.

The remaining four percent of the chat messages were equally
divided between SEEKING TECHNICAL INFO & ASSISTANCE (M = 2%,

Investigating Reflection in Undergraduate Software Development Teams: An Analysis of Online Chat Transcripts

T
i
N
N
N
N
N

80%

70%

N
N
\
\
N
\
\
N
\
N NI

B1 B2 B3 B4 85 B6 B7 BE B9

@ Contribution & Seeking Info & Assist.

60%

50%

N
N
\
3
\
D

7 A2l

N
N
N
N

810

Planning

@ Reflection @ Social Interaction 5 Emotional Response

Figure 1: Message Content by Team

SD = 1%) and REFLECTION (M = 2%, SD = 4%). These types of mes-
sages were relatively rare.

4.2 A Closer Look at Reflection

Across the entire corpus, 63 messages were coded as REFLECTION.
Table 5 presents the number of REFLECTION messages posted by
each team, broken down by the four prompt categories described
in Table 4. The bottom row (% of all chat) of Table 5 shows the
percentage of each team’s chat messages coded as REFLECTION.

As Table 5 shows, messages prompted by COURSE REQUIREMENTS
dominated teams’ REFLECTION messages, composing 76% (48/63)
of the REFLECTION corpus. Further analysis of messages coded as
CouURSE REQUIREMENTS indicates that nearly all (46 of 48, 96%)
were prompted by the requirement to perform a retrospective—an
agile practice in which teams identify what went well, what needs
improvement, and what can be changed going forward [24]. In
Course A, eight of 11 teams engaged in a retrospective through
their chat channel; two of 12 teams did so in Course B.

Another 10% of REFLECTION messages (6 of 63) were prompted
by course events outside of teams’ software development process.
The RECEIVING GRADE prompt led two teams to assess why they
got the grade they did. In Course B, teams were required to present
a demo of their software to the instructor at the end of each sprint.
In response to the PRESENTING DEMO prompt, one team assessed
how their demo went on two separate occasions.

The remaining 14% of REFLECTION messages (9 of 63) arose
organically within teams’ software development process (TEAM Ac-
TIVITY). For instance, upon completing their third sprint, a member
of Team B5 observed that “we really need that core functionality
that makes that app what it is” They went on to reflect on the team’s
process: “I think maybe it’s worth reevaluating our priorities” This
led to a planning conversation about how to better allocate the
team’s time in the next sprint.

In another example of reflection prompted by TEAM AcTIVITY,
the leader of Team B10 became frustrated by their perception that
other team members were not contributing: “You didn’t deliver
anything in terms of documentation, code, or really communication
when name redacted asked for progress updates this morning. This
is completely unacceptable” The team leader used this reflection

747

SIGCSE 23, March 15-18, 2023, Toronto, ON, Canada.

on team process to propose a detailed plan for how to complete the
remaining parts of the sprint.

5 DISCUSSION

While teams varied widely both in the extent to which they used
their chat channel and in the categorical frequency of their mes-
sage content, two content categories dominated all teams’ chats:
PLANNING/COORDINATION and CONTRIBUTION. With respect to our
research question, we found that teams rarely used their chat chan-
nels to engage in reflection: just two percent of teams’ chat messages
were coded as REFLECTION. Moreover, REFLECTION messages that
arose organically during the course of teams’ development pro-
cesses were even rarer: just 14% of the REFLECTION messages were
prompted by TEAM ACTIVITY; the rest were prompted by course
requirements or events.

One explanation of this finding is that students did not feel com-
fortable sharing their reflections in their team chat channels. To
engage in reflection, students must assess themselves and their
team. This requires interpersonal risk, which in turn requires psy-
chological safety [21] that may not have been present in the team
chat channels. Our findings suggest that students were rarely will-
ing to take the risk. When they did, it was most often prompted by
the requirement to engage in retrospectives, which led to 46 out of
the 63 REFLECTION messages (73%) observed in the chat corpus.

Given this, rather than requiring teams to perform retrospectives
only periodically, instructors could encourage increased reflection
by requiring teams to perform so-called instant retros on a daily
basis—a practice advocated by the agile community [30]. In an
instant retro, any time a team member notices something about an
individual or team process that is going well or not going well, the
team member posts the observation to the team chat channel for
further discussion and possible action.

In addition to influencing student behavior through course re-
quirements, instructors can play a powerful role in establishing
the psychological safety necessary for students to engage in more
frequent reflection [21]. They can do this by, for example, modeling
reflection, being vulnerable themselves, and providing students
with compelling reasons to engage in reflection [21].

Instructors might also encourage reflection through explicit
learning activities. For instance, instructors could have students
read about the role and importance of reflection in software devel-
opment, and then lead a class activity where teams are presented
with hypothetical team development issues to reflect on and rea-
son about. Teams could share their reflections and the ways those
reflections might lead to changes, thus seeing for themselves the
value of reflection in the software development process.

Teams’ interactions with communication (e.g., Slack, Microsoft
Teams) and collaboration (e.g., GitHub) tools provide further oppor-
tunities to prompt for reflection. For instance, a bot could monitor
a team chat channel for PLANNING/COORDINATION and CONTRI-
BUTION messages that provide opportunities for reflection, and
generate appropriate prompts. The same could be done in response
to GitHub events such as commits, issue creations, pull requests,
and the outcomes of automated test runs.

SIGCSE 23, March 15-18, 2023, Toronto, ON, Canada.

Christopher Hundhausen et al.

Table 5: Reflection Message Counts by Team, Broken Down by Prompt Category

Prompt Category Al-1 | A1-2 | A1-3 | A1-4 | A1-5 | A1-6 | A1-7 | A2-1 | A2-2 | A3-1 | A3-2 | B-1 | B-2 | B-3 |B-4|B-5|B-6|B-7|B-8|B-9| B-10 | B-11 | B-12
COURSE REQUIREMENT 4 4 5 6 4 5 6 0 0 0 6 0 2 0 0 3 0 0 2 0 0 1 0
TEAM ACTIVITY 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 2 0 1 0 0 2 0 3
PRESENTING DEMO 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
RECEIVING GRADE 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 1 0 0 0 0 0 0
Total Count 4 4 5 6 4 5 6 0 0 1 6 0 2 0 0 9 2 1 2 0 2 1 3
% of all chat 2% 3% 14% 3% 1% 2% 14% 0% 0% 1% 5% 0% | 0% | 0% | 0% |1% | 1% | 0% | 1% | 0% | 0% 2% 1%

6 THREATS TO VALIDITY
6.1 Internal Validity

Internal validity concerns the extent to which our research methods
uncover the truth regarding our research question in our specific
population. One such threat is that we have looked for evidence
of reflection only in the messages that students post in the team
channels of the official course chat app. We know that our students
used other means to communicate, including Discord, Zoom, and
direct messages (DMs) within our official chat apps; however, we
did not have access to those communications. Other places where
students may exhibit reflection, but that our analysis missed, include
commit messages and comments on GitHub issues and pull requests;
analyzing these could provide a fertile area for future work.
Another threat to internal validity is that during one course
instance in the study, the instructor invited teams that were finished
with a particular assignment to do a “mini retrospective” and post
their reflections in the chat. Teams that were not finished were
given extra time to complete that assignment. This resulted in some
teams having the opportunity for “prompted reflection”, while other
teams did not. We have mitigated this threat by categorizing those
messages into the REQUIREMENTS category so that they can be
distinguished from reflections that arose organically.

6.2 External Validity

External validity considers the extent to which our results can
be generalized to software engineering education or other team
software development contexts. A threat to external validity is that
all of the course offerings in the study occurred during academic
year 2020-2021, the first full academic year of the global Covid-19
pandemic. During this period, instruction was fully online in the
courses studied. The additional stress of this change, along with
the external stressors of the pandemic itself, may have influenced
the outcomes in ways that will not be apparent without further
follow-up study under non-pandemic conditions.

7 SUMMARY AND FUTURE WORK

To explore undergraduate software teams’ use of reflection, we have
presented the results of a content analysis of their chat channels.
The results show that evidence of reflection in chat messages is rare.
When it does occur, it is most often in response to course require-
ments, rather than arising organically through ongoing software
development work. Based on these findings, we have identified
ways that computing instructors can prompt for reflection in team
projects through pedagogical and technological interventions.

To study and improve teams’ use of reflection in software projects,
we would like to explore three avenues of future work. First, to

748

better understand teams’ use of reflection during the software de-
velopment process, we would like to triangulate data from multiple
sources, including chat channels, video meeting recordings, and
team and individual interviews. Considering a broader range of
places where reflection can occur in the software development pro-
cess will not only increase the validity of future studies, but also
provide greater insight into how teams use reflection and what
further opportunities might exist to improve it.

Second, we would like to implement a series of interventions
targeted at improving reflection in the team software development
process. These include (a) integrating explicit instruction on re-
flection into our courses, and (b) integrating reflection software
prompts into team collaboration and communication tools. In quasi-
experiments, we would like to gauge the extent to which these and
other interventions are effective in improving reflection.

Third, while reflection is known to be valuable to the software
development process, we would like to be able to tie it to specific
team outcomes. For instance, does higher use of reflection correlate
with better team grades, higher quality software processes and
products, or better learning attitudes? In addition, longitudinal
studies could provide insight into whether students’ use of reflection
in undergraduate team projects is associated with students being
better prepared for jobs in the software profession.

ACKNOWLEDGMENTS

This work was supported by the National Science Foundation under
grant nos. 1915196 and 1915198.

REFERENCES

[1] Ken Abernethy and Kevin Treu. 2009. Teaching Computing Soft Skills: An
Experiential Approach. J. Comput. Sci. Coll. 25, 2 (dec 2009), 178-186.
[2] R.R. Adisurya, H. B. Santoso, S. Fadhilah, and O. Lawanto. 2020. Information
visualization of metacognitive skills during the software development process
based on an adapted engineering design metacognitive questionnaire. Journal of
Physics: Conference Series 1566, 1 (June 2020), 012078. https://doi.org/10.1088/
1742-6596/1566/1/012078 Publisher: IOP Publishing.
Rana Alkadhi, Teodora Lata, Emitza Guzmany, and Bernd Bruegge. 2017. Ratio-
nale in Development Chat Messages: An Exploratory Study. In 2017 IEEE/ACM
14th International Conference on Mining Software Repositories (MSR). IEEE/ACM,
Buenos Aires, Argentina, 436-446. https://doi.org/10.1109/MSR.2017.43
Agile Alliance. 2022. What is a Retrospective? https://www.agilealliance.org/
glossary/heartbeatretro/
Andrew Begel and Beth Simon. 2008. Novice software developers, all over again.
In Proceedings of the Fourth international Workshop on Computing Education
Research (ICER '08). ACM, New York, NY, USA, 3-14. https://doi.org/10.1145/
1404520.1404522
Andrew Begel and Beth Simon. 2008. Struggles of new college graduates in
their first software development job. In Proceedings of the 39th SIGCSE technical
symposium on Computer science education (SIGCSE 08). ACM, New York, NY,
USA, 226-230. https://doi.org/10.1145/1352135.1352218
Elizabeth Bjarnason, Anne Hess, Richard Berntsson Svensson, Bjorn Regnell, and
Joerg Doerr. 2014. Reflecting on Evidence-Based Timelines. IEEE Software 31, 4
(2014), 37-43. https://doi.org/10.1109/MS.2014.26

B3

https://doi.org/10.1088/1742-6596/1566/1/012078
https://doi.org/10.1088/1742-6596/1566/1/012078
https://doi.org/10.1109/MSR.2017.43
https://www.agilealliance.org/glossary/heartbeatretro/
https://www.agilealliance.org/glossary/heartbeatretro/
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/1404520.1404522
https://doi.org/10.1145/1352135.1352218
https://doi.org/10.1109/MS.2014.26

Investigating Reflection in Undergraduate Software Development Teams: An Analysis of Online Chat Transcripts

&

[10

(1]

[12

[13]

[14

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22

[23

[24]

[25]

[26

[27]

[28]

Lil Blume, Ron Baecker, Christopher Collins, and Aran Donohue. 2009. A "Com-
munication Skills for Computer Scientists” Course. SIGCSE Bull. 41, 3 (jul 2009),
65-69. https://doi.org/10.1145/1595496.1562903

Quincy Brown, Frank Lee, and Suzanne Alejandre. 2009. Emphasizing Soft
Skills and Team Development in an Educational Digital Game Design Course. In
Proceedings of the 4th International Conference on Foundations of Digital Games
(Orlando, Florida) (FDG ’09). ACM, New York, NY, USA, 240-247. https://doi.
org/10.1145/1536513.1536557

Kevin Buffardi. 2020. Assessing Individual Contributions to Software Engineering
Projects with Git Logs and User Stories. In Proceedings of the 51st ACM Technical
Symposium on Computer Science Education. ACM, Portland, OR, 650-656.
Christopher N. Bull and Jon Whittle. 2014. Supporting Reflective Practice in
Software Engineering Education through a Studio-Based Approach. IEEE Software
31, 4 (2014), 44-50. https://doi.org/10.1109/MS.2014.52

Lori Carter. 2011. Ideas for Adding Soft Skills Education to Service Learning and
Capstone Courses for Computer Science Students. In Proceedings of the 42nd ACM
Technical Symposium on Computer Science Education (Dallas, TX, USA) (SIGCSE
’11). ACM, New York, NY, USA, 517-522. https://doi.org/10.1145/1953163.1953312
Emily Laue Christensen and Maria Paasivaara. 2022. Learning Soft Skills through
Distributed Software Development. In Proceedings of the International Conference
on Software and System Processes and International Conference on Global Software
Engineering (Pittsburgh, PA, USA) (ICSSP’22). ACM, New York, NY, USA, 93-103.
https://doi.org/10.1145/3529320.3529331

Michelle Craig, Phill Conrad, Dylan Lynch, Natasha Lee, and Laura Anthony.
2018. Listening to early career software developers. Journal of Computing Sciences
in Colleges 33, 4 (April 2018), 138-149.

David Curtis and Michael Lawson. 2019. Exploring Collaborative Online Learning.
Online Learning 5, 1 (2019), 21-24. https://doi.org/10.24059/0lj.v5i1.1885
Roger T. Johnson David W. Johnson. 2007. Cooperation and the Use of Technol-
ogy. Routledge, New York, NY, Chapter 33, 785--811. https://doi.org/10.4324/
9780203880869.ch33

Joanna F. DeFranco and Philip A. Laplante. 2017. Review and Analysis of Software
Development Team Communication Research. IEEE Transactions on Professional
Communication 60, 2 (2017), 165-182. https://doi.org/10.1109/TPC.2017.2656626
Vladan Devedzic, Bojan Tomic, Jelena Jovanovic, Matthew Kelly, Nikola
Milikic, Sonja Dimitrijevic, Dragan Djuric, and Zoran Sevarac. 2018.
Metrics for Students’ Soft Skills. Applied Measurement in Education
31, 4 (2018), 283-296. https://doi.org/10.1080/08957347.2018.1495212
arXiv:https://doi.org/10.1080/08957347.2018.1495212

Tania Mara Dors, Frederick M. C. Van Amstel, Fabio Binder, Sheila Reinehr, and
Andreia Malucelli. 2020. Reflective Practice in Software Development Studios:
Findings from an Ethnographic Study. In 2020 IEEE 32nd Conference on Software
Engineering Education and Training (CSEE&T). IEEE, Munich, Germany, 1-10.
https://doi.org/10.1109/CSEET49119.2020.9206217

Tore Dyba, Neil Maiden, and Robert Glass. 2014. The Reflective Software Engineer:
Reflective Practice. IEEE Software 31, 4 (2014), 32-36. https://doi.org/10.1109/
MS.2014.97

Amy C. Edmondson. 2003. Managing the Risk of Learning: Psychologi-
cal Safety in Work Teams. John Wiley & Sons, Ltd, West Sussex, Eng-
land, Chapter 13, 255-275. https://doi.org/10.1002/9780470696712.ch13
arXiv:https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470696712.ch13
Anatolij Fandrich, Nils Pancratz, and Ira Diethelm. 2022. Soft Skills and Technical
Competence: Interdisciplinary Qualification of First-Year Computer Science Stu-
dents. In Proceedings of the 27th ACM Conference on on Innovation and Technology
in Computer Science Education Vol. 2 (Dublin, Ireland) (ITiCSE 22). ACM, New
York, NY, USA, 637. https://doi.org/10.1145/3502717.3532146

Jack W. Fellers. 1996. Teaching Teamwork: Exploring the Use of Cooperative
Learning Teams in Information Systems Education. SIGMIS Database 27, 2 (apr
1996), 44-60. https://doi.org/10.1145/243350.243359

Francino, Yvette and Denman, James. 2021. What is an Agile retrospective? https:
//www.techtarget.com/searchsoftwarequality/definition/Agile-retrospective
Wouter Groeneveld, Brett A. Becker, and Joost Vennekens. 2020. Soft Skills: What
Do Computing Program Syllabi Reveal About Non-Technical Expectations of
Undergraduate Students?. In Proceedings of the 2020 ACM Conference on Innovation
and Technology in Computer Science Education (Trondheim, Norway) (ITiCSE °20).
ACM, New York, NY, USA, 287-293. https://doi.org/10.1145/3341525.3387396
Orit Hazzan. 2002. The reflective practitioner perspective in software engineering
education. Journal of Systems and Software 63, 3 (2002), 161-171. https://doi.
0rg/10.1016/S0164-1212(02)00012-2

Orit Hazzan and Gadi Har-Shai. 2013. Teaching Computer Science Soft Skills as
Soft Concepts. In Proceeding of the 44th ACM Technical Symposium on Computer
Science Education (Denver, Colorado, USA) (SIGCSE ’13). ACM, New York, NY,
USA, 59-64. https://doi.org/10.1145/2445196.2445219

Christopher Hundhausen, Adam Carter, Phillip Conrad, Ahsun Tariq, and Olusola
Adesope. 2021. Evaluating Commit, Issue and Product Quality in Team Software
Development Projects. In Proceedings of the 52nd ACM Technical Symposium on

749

™~
20,

[30

[31

[32

[34

(35]

&
S

[37

[38

(39]

[40

[41

[42]

[43

(44

[45]

'S
&

SIGCSE 23, March 15-18, 2023, Toronto, ON, Canada.

Computer Science Education (SIGCSE ’21). ACM, New York, NY, USA, 108-114.

https://doi.org/10.1145/3408877.3432362
Indeed Editorial Team. 2021. 11 Important Soft Skills for Software Develop-

ers. https://www.indeed.com/career-advice/career-development/software-
developer-soft-skills

Dominic Krimmer. 2019. The Instant Retrospective. https://luis-goncalves.com/
instant-retrospective/ Section: Agile Retrospectives Ideas: Games For Your Next
Retrospective.

K. Krippendorff. 1980. Content analysis: an introduction to its methodology. Sage
Publications, Beverly Hills.

Richard Layton, Matthew Ohland, and Hal R Pomeranz. 2007. Software for
Student Team Formation and Peer Evaluation: CATME Incorporates Team-
Maker. In 2007 Annual Conference & Exposition. ASEE, Honolulu, Hawaii, 12—
1286. https://peer.asee.org/software-for-student-team-formation-and-peer-
evaluation- catme-incorporates-team-maker

Andrew C. Loignon, David J. Woehr, Jane S. Thomas, Misty L. Loughry,
Matthew W. Ohland, and Daniel M. Ferguson. 2017. Facilitating Peer Eval-
uation in Team Contexts: The Impact of Frame-of-Reference Rater Training.
Academy of Management Learning & Education 16, 4 (Dec. 2017), 562-578.
https://doi.org/10.5465/amle.2016.0163 Publisher: Academy of Management.
Dastyni Loksa, Lauren Margulieux, Brett A. Becker, Michelle Craig, Paul Denny,
Raymond Pettit, and James Prather. 2021. Metacognition and Self-Regulation in
Programming Education: Theories and Exemplars of Use. ACM Trans. Comput.
Educ. TBD, TBD (dec 2021), 1-30. https://doi.org/10.1145/3487050 Just Accepted.
Anna B. Marques, Bruna Ferreira, Adriana Lopes, and Williamson Silva. 2020.
Stimulating the Development of Soft Skills in Software Engineering Education
through Design Thinking. In Proceedings of the 34th Brazilian Symposium on
Software Engineering (Natal, Brazil) (SBES °20). ACM, New York, NY, USA, 690-699.
https://doi.org/10.1145/3422392.3422488

Janet Metcalfe and Arthur P. Shimamura (Eds.). 1994. Metacognition: Knowing
about knowing. The MIT Press, Cambridge, MA, US. https://doi.org/10.7551/
mitpress/4561.001.0001 Pages: xiii, 334.

Tom Nurkkala and Stefan Brandle. 2011. Software Studio: Teaching Professional
Software Engineering. In Proceedings of the 42nd ACM Technical Symposium on
Computer Science Education (Dallas, TX, USA) (SIGCSE ’'11). ACM, New York, NY,
USA, 153-158. https://doi.org/10.1145/1953163.1953209

Daniela Pedrosa, Mario Madureira Fontes, Tania Araujo, Ceres Morais, Teresa
Bettencourt, Pedro Duarte Pestana, Leonel Morgado, and José Cravino. 2021.
Metacognitive challenges to support self-reflection of students in online Software
Engineering Education. In 2021 4th International Conference of the Portuguese
Society for Engineering Education (CISPEE). CISPEE, Lisbon, Portugal, 1-10. https:
//doi.org/10.1109/CISPEE47794.2021.9507230

James Prather, Brett A. Becker, Michelle Craig, Paul Denny, Dastyni Loksa,
and Lauren Margulieux. 2020. What Do We Think We Think We Are Do-
ing? Metacognition and Self-Regulation in Programming. In Proceedings of
the 2020 ACM Conference on International Computing Education Research (Vir-
tual Event, New Zealand) (ICER "20). ACM, New York, NY, USA, 2-13. https:
//doi.org/10.1145/3372782.3406263

Sadhana Puntambekar, Gijsbert Erkens, and Cindy Hmelo-Silver. 2011. Analyzing
Interactions in CSCL: Methods, Approaches and Issues. Springer, New York, NY.
https://doi.org/10.1007/978-1-4419-7710-6

Sandeep Purao and Hoi Suen. 2010. Designing a Multi-Faceted Metric to Evalu-
ate Soft Skills. In Proceedings of the 2010 Special Interest Group on Management
Information System’s 48th Annual Conference on Computer Personnel Research on
Computer Personnel Research (Vancouver, BC, Canada) (SIGMIS-CPR ’10). ACM,
New York, NY, USA, 88-91. https://doi.org/10.1145/1796900.1796934

A. Radermacher and G. Walia. 2013. Gaps between industry expectations and
the abilities of graduates. In Proceeding of the 44th ACM Technical Symposium on
Computer Science Education (SIGCSE ’13). ACM, New York, NY, USA, 525-530.
https://doi.org/10.1145/2445196.2445351

Harry Budi Santoso, Oenardi Lawanto, Betty Purwandari, R. Yugo K. Isal, and Rian
Fitriansyah. 2017. Investigating Students’ Metacognitive Skills while Working
on Information Systems Development Projects. In 2017 7th World Engineering
Education Forum (WEEF). IEEE, Kuala Lumpur, Malaysia, 478-483. https://doi.
org/10.1109/WEEF.2017.8467121

D. Schon. 1983. The reflective practitioner: How professionals think in action. Basic
Books, New York.

J.E. Sims-Knight and R.L. Upchurch. 1998. The acquisition of expertise in software
engineering education. In FIE "98. 28th Annual Frontiers in Education Conference.
Moving from ‘Teacher-Centered’ to "Learner-Centered’ Education. Conference Pro-
ceedings (Cat. No.98CH36214), Vol. 3. IEEE, Tempe, AZ, USA, 1302-1307 vol.3.
https://doi.org/10.1109/FIE.1998.738679

Kathleen Swigger, Matthew Hoyt, Fatma Cemile Serce, Victor Lopez, and
Ferda Nur Alpaslan. 2012. The temporal communication behaviors of global
software development student teams. Computers in Human Behavior 28, 2 (2012),
384-392. https:/doi.org/10.1016/j.chb.2011.10.008

https://doi.org/10.1145/1595496.1562903
https://doi.org/10.1145/1536513.1536557
https://doi.org/10.1145/1536513.1536557
https://doi.org/10.1109/MS.2014.52
https://doi.org/10.1145/1953163.1953312
https://doi.org/10.1145/3529320.3529331
https://doi.org/10.24059/olj.v5i1.1885
https://doi.org/10.4324/9780203880869.ch33
https://doi.org/10.4324/9780203880869.ch33
https://doi.org/10.1109/TPC.2017.2656626
https://doi.org/10.1080/08957347.2018.1495212
https://arxiv.org/abs/https://doi.org/10.1080/08957347.2018.1495212
https://doi.org/10.1109/CSEET49119.2020.9206217
https://doi.org/10.1109/MS.2014.97
https://doi.org/10.1109/MS.2014.97
https://doi.org/10.1002/9780470696712.ch13
https://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1002/9780470696712.ch13
https://doi.org/10.1145/3502717.3532146
https://doi.org/10.1145/243350.243359
https://www.techtarget.com/searchsoftwarequality/definition/Agile-retrospective
https://www.techtarget.com/searchsoftwarequality/definition/Agile-retrospective
https://doi.org/10.1145/3341525.3387396
https://doi.org/10.1016/S0164-1212(02)00012-2
https://doi.org/10.1016/S0164-1212(02)00012-2
https://doi.org/10.1145/2445196.2445219
https://doi.org/10.1145/3408877.3432362
https://www.indeed.com/career-advice/career-development/software-developer-soft-skills
https://www.indeed.com/career-advice/career-development/software-developer-soft-skills
https://luis-goncalves.com/instant-retrospective/
https://luis-goncalves.com/instant-retrospective/
https://peer.asee.org/software-for-student-team-formation-and-peer-evaluation-catme-incorporates-team-maker
https://peer.asee.org/software-for-student-team-formation-and-peer-evaluation-catme-incorporates-team-maker
https://doi.org/10.5465/amle.2016.0163
https://doi.org/10.1145/3487050
https://doi.org/10.1145/3422392.3422488
https://doi.org/10.7551/mitpress/4561.001.0001
https://doi.org/10.7551/mitpress/4561.001.0001
https://doi.org/10.1145/1953163.1953209
https://doi.org/10.1109/CISPEE47794.2021.9507230
https://doi.org/10.1109/CISPEE47794.2021.9507230
https://doi.org/10.1145/3372782.3406263
https://doi.org/10.1145/3372782.3406263
https://doi.org/10.1007/978-1-4419-7710-6
https://doi.org/10.1145/1796900.1796934
https://doi.org/10.1145/2445196.2445351
https://doi.org/10.1109/WEEF.2017.8467121
https://doi.org/10.1109/WEEF.2017.8467121
https://doi.org/10.1109/FIE.1998.738679
https://doi.org/10.1016/j.chb.2011.10.008

	Abstract
	1 Introduction
	2 Related Work
	2.1 Soft Skills in Computing
	2.2 Reflection in Software Development
	2.3 Studying Software Team Communication

	3 Methods
	3.1 Courses and Participants
	3.2 Materials: Team Project
	3.3 Data Collection and Analysis

	4 Results
	4.1 Message Content
	4.2 A Closer Look at Reflection

	5 Discussion
	6 Threats to Validity
	6.1 Internal Validity
	6.2 External Validity

	7 Summary and Future Work
	Acknowledgments
	References

