
LISTENING TO EARLY CAREER SOFTWARE DEVELOPERS *

Michelle Craig
University of Toronto

mcraig@cs.toronto.edu

Phill Conrad, Dylan Lynch, Natasha Lee and Laura
Anthony

University of California, Santa Barbara
pconrad@cs.ucsb.edu

ABSTRACT

Previous work finds that recent college graduates entering the software
development industry encounter difficulties early in their careers, due to
significant differences between their coding experiences in academia vs.
what is expected of them on the job. To explore the gap between academic
and industry software development, we conducted interviews with twenty
early career software developers with four-year degrees in CS. We
present an analysis of these interviews, including excerpts in the
developers' own words, organized around six themes. We conclude with
thoughts on how to bridge this gap so that our students may be better
prepared when we launch them into their careers.

1 INTRODUCTION

Students that graduate from four-year degree programs in Computer Science
pursue a variety of career paths. Some pursue graduate degrees in Computer Science, or
professional degrees in law, medicine, or business. The vast majority, however, directly
enter the workforce-most, at least initially in career paths involving software
development.

There is no shortage of opinions from faculty about what an appropriate
undergraduate curriculum in Computer Science should look like, and the extent to which
it should, or should not, be driven by perceived or real software industry needs. In this
paper, we listen to a different set of opinions-those of graduates from four-year degree
programs in Computer Science with between one and five years of industry experience.
We hear about their experiences of stepping into the world of software development, and
whether or not they felt well-served by their university preparation. We analyze

* Copyright © 2018 by the Consortium for Computing Sciences in Colleges. Permission
to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the CCSC copyright notice and the
title of the publication and its date appear, and notice is given that copying is by
permission of the Consortium for Computing Sciences in Colleges. To copy otherwise,
or to republish, requires a fee and/or specific permission.

138

CCSC: Southwestern Conference

interviews with twenty recent graduates, identifying common themes about the gap
between the preparation that a CS degree provides, and the skills and knowledge needed
to be successful in a software development career. We also surveyed previous work in
this area.

Our literature survey found that this area has been studied for at least a decade
with a variety of methodologies, resulting each time in similar recommendations for
curricular improvements. But while small curricular innovations have been discussed
in experience reports during this time, on the whole, very little has changed – a gap
persists. Our paper makes three contributions: (1) a framework for characterizing the gap
organized around six specific themes that emerged from our interviews (see Table 2), (2)
first person accounts of this gap by developers, in their own words, and (3) some thoughts
on why the gap has persisted, and how the computing education community might
respond.

2 RELATED WORK

Table 1 lists five previous studies related to early career developers. Begel &
Simon performed a "fly on the wall" study of eight recent college graduates during their
first six months at Microsoft. The first of two resulting papers focused on abilities,
deficiencies and misconceptions of early career software developers [2], while the second
applied ideas from a research field known as "newcomer socialization" [1]. Sudol &
Jaspan examined differences between the beliefs of students and industry professionals
about Software Engineering [11], focusing on particular misconceptions. Hewner &
Guzdial interviewed and surveyed professionals at a particular computing gaming
industry employer to determine what skills were valued in game developers [4].
Radermacher & Walia addressed the gap between student preparation and industry
expectations in a 2013 literature survey [8]. Exter investigated the skills gap in a 2014
report of a study of educational software developers [3]-like our work, it includes an
analysis of interview transcripts.

Our work further explores the skills gap for students from university CS programs
who move to software development positions. Ten years have passed since Begel &
Simon conducted their observations and called for universities to change their curricula
to incorporate the use of legacy code projects-a long time in an industry that changes as
rapidly as software development. Some individual curricular interventions have been
reported including the use of Open Source Software [6] and studio-based learning [7].
We wanted to know: does the gap persist, or have things changed? Like Exter, who
interviewed developers of educational software, and Hewner & Guzdial, who interviewed
the game-development community, we listened to developers first hand in
semi-structured interviews. Unlike these two previous studies, our interviews are not
limited to developers from a particular industry subdomain. In contrast to Begel & Simon,
our study relies on self-reporting via interviews rather than direct observation, is not
focused on employees of a single company, and is limited to participants that have
completed four-year college degrees.

139

JCSC 33, 4 (April 2018)

Table 1: Related Studies

S1 2008 Begel & Simon [1,2] "Fly-on-the-wall" observation, 8 early
career developers at Microsoft,
post-study interviews

S2 2010 Sudol & Jaspan [11] surveys of 45 industry professionals and
115 students

S3 2010 Hewner & Guzdial [4] surveys of 7 leaders and 100
professionals at a game development
company

S4 2013 Radermacher & Walia [8] systematic literature survey of 30 papers
(from pool of 14,968 candidates from
1995-2011.)

S5 2014 Exter [3] interviews with 9 developers from
educational software industry, online
survey (N=74)

2018 (this paper) 20 interviews with early career
developers from 15 companies across
four U.S. States

3 METHODOLOGY

We used personal contact networks, word of mouth and developer meetup groups
(i.e. convenience sampling) to recruit developers who consented to participate in an
interview of no longer than one hour. The first author conducted 20 interviews (nine
face-to-face, the others via teleconference). The interviewer had a previous relationship
with two of the 20 subjects but did not know the others. All the interviews began with the
following grand-tour question [9]:

I'm interested in hearing about the software development that you do on your job
and in particular how your undergraduate education prepared you (or didn't prepare you)
for what you do. Can you think back to your first year as a developer after graduating and
tell me your story?

The subject was encouraged to tell as much of their story as possible without
interruption, with the interviewer indicating ongoing interest but trying not to influence
the conversation. Once the subject ran out of story, the interviewer continued with
follow-up questions in the form of a semi-structured interview, allowing the researcher
to seek clarifications and ask about a few specific topics of interest if those were not
already covered. [10] The interviewer used this list of possible follow up questions,
adjusting the wording as appropriate to subjects' previous responses:

• Which of your courses or university activities do you think were most useful in
preparing you for your job?

140

CCSC: Southwestern Conference

• In what areas were you under-prepared? well-prepared?
• What percentage of your work time is spent on software development activities?

(coding, designing, testing, etc.)
• What fraction of this is on legacy code (vs. greenfield)
• Did you have legacy code exposure during your undergrad education from some

course or activity?
• Knowing what you know now, do you have any suggestions for an undergraduate

CS program that would prepare students to be software developers?

Except for one interview where the interviewer took extensive handwritten notes, audio
for interviews was recorded and transcribed. All participants in the study were developers
with between one and five years of work experience after graduation. The subjects
spanned 15 companies, four U.S. States and came from four different universities. The
companies represented ranged from tiny startups with a handful of employees to small
businesses with between 50 and 100 developers to "household name" giants with more
than 50,000 employees.

All five authors met, read each transcript aloud, phrase-by-phrase. For each
phrase, we discussed and assigned one or more codes. We did not start with pre-defined
codes-in each case, we discussed whether to assign an existing code, or create a new one.
All coding was done by consensus, thus inter-rater reliability is not an applicable metric.

4 ANALYSIS AND DISCUSSION

Our analysis of the interview transcripts revealed six specific dimensions of the
gap between the experience of writing code in industry vs. what students do in their
university programming assignments. We re-examined the studies listed in Table 1 in
light of these six axes. For each, a checkmark appears in the columns corresponding to
studies presenting evidence that this axis is important aspect of the gap. The remainder
of this section presents a discussion of these six themes as found in both the previous
work, and in our subjects' own words. Bold numbers P01 through P20 indicate the
participant numbers and quotations are italicized.

141

JCSC 33, 4 (April 2018)

4.1 What: Differences in Scope

In school, most assignments are well-defined and narrowly scoped. Instructors or
TAs write specifications which, in order to make grading manageable, have well-defined
deliverables. In contrast, our new developer participants experienced poorly specified and
open-ended requirements.

P10 Sometimes it [the program he is writing at work] is not as well thought out. Like in
school, it's very well thought out. The tests are always written for you and you make the
tests pass. Or the project is really well defined. Like the scope of the project is so well
defined. But here, like half the time we don't know what problem we're solving.

Some participants pointed out that project courses in school were closer to their
current work in terms of scope.

P20 Mostly the project courses were the best preparing me ... [because they] give you a
very limited time schedule. So you have to ... learn how to scope things, how to adapt to
different situations. Also, because you're working with a bunch of other students who also
have their own priorities and some of them have different work ethics.

Many interviewees talked about projects done outside of school that helped them
learn and practice concepts not well-covered in their school experience such as fault
tolerance, scale, deployment and project-management infrastructure. Even when
schoolwork includes projects, participants noted that the requirements specifications in
industry have a lot more give-and-take than the fixed requirements of a school
assignment:

P19 Some other things I didn't learn in school were ... arguing about the design, not
arguing, but debating about the best possible solution for the product requirements as
well as the engineering requirements because you know PMs can dream up all sorts of
great things for their product, but in the end someone's got to implement it, and sort of
that give and take is a process.

P14 suggested that to better prepare students, instructors should assign
programming tasks and then intentionally change the specifications after students have
partially finished the coding.

4.2 When: Short vs. Long Time Spans

In school, students typically write code for an assignment, then move on to the
next one, seldom (if ever) revisiting old code. The time span is days or weeks-at most,
a few months. In contrast, industry code lifespan is more typically years-developers
inherit legacy code from their predecessors and must maintain, interface with or extend
this code.

Inspired partially by Begel & Simon's observations in this area, we asked each
developer to estimate the fraction of time they spent on legacy code vs. greenfield
development. The answers ranged from no time on legacy code to 95% of their time.
Those in small startups indicated less legacy code work. A few developers indicated that
when first hired they spent a larger fraction of their time on legacy code but had recently
started a project with more new code development. Some noted that even new code is
effectively becomes legacy code in short order.

142

CCSC: Southwestern Conference

P16 Unless you're starting your own startup from scratch or you're so experienced that
they're going to give you a brand new project, chances are you're going to be inheriting
some legacy code

P10 I would say a lot of it feels greenfield, but in reality almost, I mean anything that you
make greenfield within a month is now legacy. I wrote something a month ago, and I just
looked at it last night because I have to kind of do it again but in a slightly different way,
yay, and now I'm looking at it and I'm like 'Why did I, (pause) I don't even know what I'm
doing here. What is going on?'

P14 I'm doing almost all of the work by myself, so it's all green (pause) or you could say
it's legacy after a day because you still have to maintain it.

The fact that essentially all industry code quickly becomes legacy code that has to be
maintained highlights the importance of good design and good style (a theme we return
to in Section 4.6). Unless curricula are specifically designed to force these issues,
students may not appreciate this until they arrive in industry. Most developers we
interviewed had not worked with legacy code while at school:

P06 The biggest difference between school and real life is that everything I did in college
was greenfield and almost nothing since.

When we specifically asked about school experience with legacy code, six
participants (from two different universities) mentioned their operating systems course.
Some of these said that the OS course was hard because of the large pre-existing
codebase but others indicated that it was still not as difficult as the challenges faced at
work. One pointed out that the starting codebase in the OS course was well-written code.

P06 It was different [than the legacy code at work] because the other parts worked pretty
well and you didn't really have to understand all of it or have to wonder how to fit in your
stuff.

P14 and P15 (from the same school), independently mentioned a specific course
they took that incorporated maintenance of legacy applications:

P16 [This] class was really cool in the sense that it kind of showed you here's how you
pick up a project that's already existing and then make modifications to it to meet some
new spec while, at the same time, you're collaborating with your team to keep the code
as understandable to everyone as possible.

P14 That was the class I probably learned the most in. He immediately like, dove us into
Github, and um, we were forced to use version control and forced to work with legacy
applications and that kind of like, gave me the best experience for the industry.

Later in the interview when P14 revealed that he spent all his working time doing
greenfield development, the interviewer probed further about the usefulness of this
classroom experience.

Interviewer: So you mentioned having an experience with legacy code in your undergrad.
Do you think that was valuable even though you're not doing it now as a developer?

P14 I still kind of do it, because I'm like "what was I actually trying to do here?" (pause)
so with the legacy stuff in [professor X's] class, you almost (pause) we spent a lot of,
somewhat of the time trying to figure out where in the code we should make a change. So
that was a good experience to have done.

143

JCSC 33, 4 (April 2018)

Most of the developers indicated that their jobs now, but even more so in their
first few months, involved spending a lot of time working with legacy codebases. Almost
all of them indicated that this was a struggle and while a couple had experienced legacy
applications in their coursework, others expressed that there was an opportunity for
university programs to better prepare students for this. In contrast, P7 indicated that while
he of course didn't specifically learn the proprietary software from his new company, he
felt that school had prepared him well for dealing with large amount of legacy code
claiming, "I had the tools."

Two of the most strongly-held misconceptions from Sudol & Jaspan are directly
related to legacy code vs. greenfield development, Exter calls for programs to "bring
existing large-scale real-world applications and infrastructures into the curriculum"
adding to the earlier calls from Begel & Simon and Sudol & Jaspan to incorporate more
than greenfield development into university assignments.

4.3 Who: Individual vs. Large Team

All of the related work mentioned the importance of teamwork for software
developers. For example, in Hewner & Guzdial's survey, "ability to work with others
and check your ego at the door" was the most-essential qualification for employment. Yet
Sudol & Jaspan still find persistent student misconceptions about the value of teamwork.

Our participants also report it as an area where they were insufficiently prepared.
When the codebase you are working with was written by numerous previous developers,
finding the right people at your company with the expertise you need-and interacting with
them-was often a significant challenge (in contrast to a college course context where the
professor and/or TAs are typically the obvious ones to ask.)

P20 You need to be able to figure out which people on the team to ask questions to-and
then ask them the right sorts of questions to get the information you need, to work with
the code that you're dealing with.

P19 A lot of understanding it [a large codebase] is also like finding who to talk to about
which part.

Another theme stressed repeatedly was being unprepared for the degree of
teamwork required in their jobs.

P10 the one thing I felt like ... I wasn't prepared for was ... I didn't have much project
experience on like, working as a team.

P17 that's what I do on a day to day basis; I work in a team with three other devs and uh,
we do have to divide and conquer the work.

P07 the classes where you worked in groups in Computer Science was (sic) very useful
to me … My advice would be focus on group project … I think that's very critical to
people coming out of college and working in a big business like this. You need to know
how to work with other people.

P11 They [my instructors] didn't want us to work in pairs. It was all individual work
whereas in actual-going into the field it was all about asking questions, getting help from
everyone else.

144

CCSC: Southwestern Conference

Participants stressed time management in a team context:

P09 The first thing I noticed when I got into the workforce is like-"wow this is like we're
all working on a huge group project together" - so I definitely think just as far as like
personal management and time management skills and working with people in group
projects -it definitely even applies today in my current role as a software engineer

4.4 Why: Learning vs. User Needs

Radermacher & Walia reported a study[5] from 1999 that found that, "educators
did not place as much value on teaching students how to prepare for and conduct
interviews with users as did industry practitioners." It appears that this is still the case 18
years later. Four students emphasized the importance of customer considerations in
industry work, with three students noting that a majority of their development time was
spent with customers.

P10 The engineering that I do a lot of the times is talking with product and deciding what
the problem is ... me trying to understand what exactly the problem they're seeing is

P12 most of the time [my work is] altering existing code to meet the needs and
requirements of the customers

P06 Customers wanted things certain ways and making them happy was more important
than other considerations

4.5 How: Ad-Hoc vs. Professional

Our developers told us that Agile software development practices, which are very
relevant to industry work, were rarely or never mentioned in undergraduate courses, and
if so were poorly covered.

P03 as far as what's extremely relevant for the job ... source control, testing, agile
principles, weren't really mentioned

P08 I didn't really understand agile

They felt that not using version control makes the projects completed at school
unnecessarily harder, echoing a concern from Exter's survey, where "working with
change control software" was the least-well covered topic with over 75% of the 53
respondents who had taken computing courses indicating that it was not covered at all.
This may be attributed to the Exter's participant population, however Radermacher &
Walia and Begel & Simon both also cite tool use (particularly configuration management
and version control) as deficiencies. Our students reported this as well. P15 mentioned
how the use of Github in particular enhances a developer's resume:

P11 I didn't know about github or git or anything related to that and that would have
been helpful to learn ... every company has something managing their code online and
usually it's github

P15 Teach github at a first level ... you cannot go to a company these days and not know
github ... [Github is] basically your online portfolio

145

JCSC 33, 4 (April 2018)

P10 whenever I used code in school we would literally email it. Like when we were
working on a project and on a team, I remember emailing code. I remember sending
someone a dropbox file. And I remember like copying and pasting it wrong and getting
really frustrated and thinking I was really dumb because I couldn't figure out the
program, and in reality I just missed a semicolon somewhere. And it was because I copy
and pasted it wrong

Some subjects also expressed the need for skills in implementing and maintaining
production level programs.

P08 [During school] I never had worried about "productionizing" services like being
very fault tolerant. Never worried about monitoring a service, or alerting, or manually
monitoring jobs

Testing is also important in industry work and developers argued that it wasn't
sufficiently covered in school.

P16 I feel like I would have had a much easier time doing projects on complicated issues
if I had known how to prevent stupid errors via knowing things like testing, code quality
and you know, preventing giant strings of code that are untestable.

4.6 How Big: Small vs. Large Codebases

Participants said that they spent much more time adding features to large existing
codebases than writing stand-alone programs. When asked about how school could have
better prepared them, subjects indicated that they wanted more emphasis on reading code,
using libraries, good design and refactoring. One developer explains that having good
code style has become more important now that he creates code so rapidly he no longer
remembers all the details, while another developer explains how much her code style has
improved since starting work in industry.

P01 I wish there was more of an emphasis on integrating different libraries.

P06 [Programs should] focus more on reading code and working in other codebases.

P04 [Students should be required to] have the framework of some system built out and
then build new features for an existing system, so you have to understand the system
before you can go and design something that builds on top of it.

P08 Learning how to refactor period was one of the biggest things. I feel like in a lot of
academic settings, you write your main function and you sort of overflow one file with a
lot of things to do something that you're tasked with and its not. There's no focus on how
you are going to build an architecture how the system will function with singular
responsibilities.

P10 it [writing code] has become so routine for me that I don't remember what half of it
is and if you don't have some sort of rules about what's going on then you're like, (pause)
I don't know. So it's like 'what does this function do?'

P19 [When I was at school] I wrote awful code. Lines everywhere, you know, just hard
to read. At [company name], we're very strict about following [company name] style
guides. ... They're very strict. We follow them to the letter. Learning how to structure my
code like that, actually I think it's definitely, I mean it helps within a lot of the codebase

146

CCSC: Southwestern Conference

having everything follow a certain standard, but also I think the rules in the style guide
generally do make the code a lot easier to read.

5 INTERNSHIPS

Although we didn't set out to explore internships, many of our participants
indicated that during their college education, they had done one or more internships in
industry. Of those that did, most indicated that it was the closest experience to their
current situation. In some dimensions, particularly "how" (professional tools) and "who"
(larger teams), internships are closely aligned with the industry software experience. But
in other dimensions, our developers told us that an internship is often more like a
university experience: many interns are sheltered from the frustrations of legacy code and
the demands of real customers by being given projects that are more "stand-alone" (rather
than tightly integrated with legacy code) and low-risk (vs. mission critical). The timelines
are often short-the length of one internship-and because the "user" is often the supervising
developer, the specifications can be more narrowly scoped than typical work. These
observations are in agreement with those of Sudol & Jaspan who find that students who
complete internships have fewer misconceptions overall, but their likelihood of having
a misconception about working alone or about the accuracy of client descriptions of
requirements does not correlate with having completed an internship. We conclude that
internships are useful in addressing the gap, but not the full answer.

6 THREATS TO VALIDITY

Our participants' comments on their university training reflects their own
programs and schools. Even within the limited scope of universities offering four-year
CS programs, 20 interviews with students from four schools may not be enough. While
our coverage of company size was well spread, the web development industry may be
over-represented, vs. the software industry as a whole.

We attempted to reduce to threat of subjects telling us "what they expected us to
want to hear" by having an unknown person conduct the interviews where possible.
However, the interviewer did know two of the subjects and the initial contact for many
of the others was from someone they knew from school. So while minimized, this threat
was not eliminated.

7 CONCLUSIONS AND FUTURE WORK

Our interviews reveal that many new software developers feel ill-prepared in
multiple areas including tool use, communications, teamwork and working on large,
long-lasting, open-scoped, complex software systems. We claim that this is due to the
fundamental differences between the programming activities typically done in university
coursework and the coding done in professional software development environments. In
spite of nearly two decades since the gap in industry/academic coding experiences was
identified and nearly ten years since researchers made recommendations for curricular
changes to address the gap, it is still quite wide.

147

JCSC 33, 4 (April 2018)

Academics often note that the purpose of university education is not vocational
training (e.g. "we are not a trade school"). This point of view is not without merit. We are
not suggesting a wholesale course correction, but rather a healthy middle ground that
balances a rigorous training in Computer Science fundamentals with helping students feel
well prepared for their careers.

We note three main obstacles to progress. The first is awareness and
acknowledgement of the problem. We addressed this by giving voice to our former
students concerns directly, in their own words. The fact that their concerns echo ones
raised in previous studies suggests they are not anecdotal or isolated. The second is
familiarity: we hypothesize that our oft-overworked faculty are at times ill-equipped to
teach students about professional practices and large, complex software systems because
they themselves have never crossed the gap. To address this, we suggest that faculty may
be well served by taking some time to have authentic encounters with industrial practices,
perhaps through a "summer internship in industry" similar to those our students
experience. One of the faculty authors of this paper experienced just such an internship
and found it eye-opening, and helpful in transforming that instructor's courses.

The third is likely the most difficult to surmount: namely the difficulty of creating
authentic experiences of various aspects of the industry software development context in
academic settings-especially doing so at scale. There have been successful efforts with
small numbers of students (e.g. [7]), but scaling these efforts to the enrollments of large
programs is daunting: imagine, for example, the challenges of managing a class of 200
students in pairs, with each pair working on a different project in teams-perhaps using
Agile processes such as Scrum or Kanban-with some of these projects having
dependencies on one another. How can one provision these projects in a way that
addresses concerns of consistent evaluation and grading, equitable learning opportunities,
and academic integrity, to name just three concerns-not just in a senior capstone project
setting, but throughout the curriculum?

These are difficult questions. Yet, somehow, software managers in industry do
manage large groups of developers, working on disparate projects. Perhaps the next group
of our former students to whom we should listen are those that have gone on to careers
managing such organizations, to see what we can learn about how we might restructure
our courses to bridge the gap.

REFERENCES

[1] Begel A., Simon B., Novice software developers, all over again, Proceedings
of the Fourth International Workshop on Computing Education Research,
3-14, 2008.

[2] Begel A., Simon B., Struggles of new college graduates in their first software
development job, Proceedings of the 39th SIGCSE Technical Symposium on
Computer Science Education, 226-230, 2008.

148

CCSC: Southwestern Conference

[3] Exter M., Comparing educational experiences and on-the-job needs of
educational software designers, Proceedings of the 45th ACM Technical
Symposium on Computer Science Education, 355-360, 2014.

[4] Hewner M., Guzdial M., What game developers look for in a new graduate:
Interviews and surveys at one game company, Proceedings of the 41st ACM
Technical Symposium on Computer Science Education, 275-279, 2010.

[5] Misic M., Russo N., An assessment of systems analysis and design courses.
Journal of Systems and Software, 45(3):197- 202, 1999.

[6] Nascimento, D., Almeida Bittencourt, R., and Chavez, C., Open source
projects in software engineering education: A mapping study. Computer
Science Education, 25(1):67-114, 2015.

[7] Nurkkala T., Brandle S., Software studio: Teaching professional software
engineering. Proceedings of the 42nd ACM Technical Symposium on Computer
Science Education, 153-158, 2011.

[8] Radermacher A., Walia G., Gaps between industry expectations and the
abilities of graduates. Proceeding of the 44th ACM Technical Symposium on
Computer Science Education, 525-530, 2013.

[9] Spradley J., The ethnographic interview. Waveland Press, 2016.

[10] Strauss A., Corbin J., et al. Basics of qualitative research, volume 15. 1990.

[11] Sudol L., Jaspan C., Analyzing the strength of undergraduate misconceptions
about software engineering. Proceedings of the Sixth International Workshop
on Computing Education Research, 31-40, 2010.

149

	LISTENING TO EARLY CAREER SOFTWARE DEVELOPERS
	Michelle Craig University of Toronto
	Phill Conrad, Dylan Lynch, Natasha Lee
	Laura Anthony University of California, Santa Barbara

