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ABSTRACT
A good suite of test inputs is an indispensable tool both for manual
and automated assessment of student submissions to programming
assignments. Yet, without a way to evaluate our test suites, it is
di�cult to know how well we are doing, much less improve our
practice. We present a technique for evaluating a hand-generated
test suite by comparing its ability to �nd defects against that of a test
suite generated automatically using Constraint Logic Programming
(CLP). We describe our technique and present a case study using
student submissions for an assignment from a second-year pro-
gramming course. Our results show that a CLP-generated test suite
was able to identify signi�cant defects that the instructor-generated
suite missed, despite having similar code coverage.
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1 INTRODUCTION
To evaluate student submissions to programming assignments, we
need a good set of test cases. �is is certainly true when assessing
student code by hand, and even more crucial when assessment is au-
tomated. As course enrollments grow, so has the use of automated
assessment tools, sometimes called autograders [8, 20]. An ideal
test suite for either manual or automated grading would be able
to (a) provide helpful information on in-progress student work to
detect and diagnose defects, and (b) di�erentiate between student
solutions in a way that maps to student learning so that instructors
can assign an appropriate distribution of grades.

In practice, however, instructors have limited time to devote
to developing test suites for their course assignments. Moreover,
instructors o�en update assignments over time, be it for improving
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the assignment, altering learning objectives, preventing previous
solutions from being dishonestly proliferated, or otherwise. �e end
result is that gaps can be easily introduced in a test suite, leading
to overlooked edge cases and untested behaviors. By their very
nature, these gaps are elusive and di�cult to pinpoint, as tests
fundamentally can only spot problems one is looking for.

We observe that the problem of developing be�er test suites and
testing techniques is well-studied in So�ware Engineering, with a
variety of automated techniques being employed. �ese approaches
have found several thousand bugs in popular so�ware like gcc,
clang, and Mozilla FireFox [6, 11–13, 21]. Most importantly, these
bugs have been found in so�ware which has been heavily tested
manually with extensive handwri�en test suites. As such, these
sort of automated testing techniques are well-suited to our problem
of �nding gaps in a traditional handcra�ed test suite.

Building on this research, we applied an automated testing tech-
nique based on Constraint Logic Programming (CLP [9], explained in
Section 3) to the automated generation of a test suite for a program-
ming assignment (described in Section 4) from a Sophomore-level
Java course. �e assignment is complex, requiring students to im-
plement non-trivial modi�cations to the tokenization, parsing, and
evaluation components of an interpreter for in�x arithmetic expres-
sions. Moreover, the assignment has a history of modi�cation and
it features a large handwri�en test suite authored jointly by two
course instructors. For these reasons, it serves as an excellent case
study in seeing where the gaps lie in its existing tests.

�is case study (described in Section 5) has revealed a number
of de�ciencies in the handwri�en tests, with a multitude of defects
being found by the automated tests which were not spo�ed by
the manual tests. We con�rmed via manual code inspection that
these defects can be tied to real bugs in student code which were
missed by the handwri�en test suite. We also found that the tests
passed and failed by the automated test suite were instrumental in
grouping student solutions with similar behaviors.

�e contributions of this paper are (1) a description of how to
apply CLP to automatically produce a test suite for an interpreter’s
tokenizer, parser, and evaluator components (2) a technique for
evaluating a handwri�en test suite’s defect-�nding e�ectiveness
by comparison against an automatically-generated test suite (3) a
case study of this technique for a non-trivial sophomore-level Java
assignment, demonstrating its e�ectiveness.
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2 RELATEDWORK
At many campuses, Computer Science course enrollments are in-
creasing faster than resources available to instructors; we are being
asked to evaluate more student work in the same amount of time.
Wilcox et al. [20] argues that “carefully designed and managed
automation can improve student performance while realizing a
signi�cant savings of scarce teaching resources.”

Tillmann et al. [17] created Pex4Fun, which is a non-traditional
solution to grading in Massive Open Online Courses. Pex4Fun
incorporates automated grading based on symbolic execution. Gul-
wani et al. [5] a�empt to address the tedious process of manually
creating tests by developing a tool that generates feedback on the
performance of student programs. �e tool is a light-weight pro-
gramming language extension that uses dynamic analysis. Singh
et al. [15] devised a new method for giving feedback to incorrect stu-
dent solutions. �ey created a language which describes correction
rules for a speci�c student solution. �eir method requires that the
instructor provide a reference implementation of the assignment
solution. Ihantola [7] applied an automatic test data generation tool
named Java Path�nder [18] to automatic assessment and found that
symbolic execution with lazy initialization can be used to generate
test data directly from student programs.

CLP was �rst introduced in Ja�ar et al. [9], as a general frame-
work encompassing logic programming languages such as Pro-
log [16]. For the purposes of this paper, CLP is viewable funda-
mentally as Prolog with some convenient extensions. �e work of
Dewey et al. [1–3] discusses how CLP can be applied to generat-
ing test suites for a variety of domains, including language inter-
preters [2], data structure APIs [1], and typecheckers [3]. While
Dewey et al. uses CLP for the purposes of testing, a signi�cant
amount of CLP code must be wri�en for the particular domain
which is to be tested. While CLP has shown itself to be e�ective
for testing large industrial applications, we are not aware of any
work describing its application to evaluating student code, nor has
it speci�cally been applied to testing tokenizers or parsers.

3 TEST SUITE GENERATION VIA CLP
�is section discusses why and how we use CLP for generating test
suites for language tokenizers, parsers, and evaluators. We start
�rst with some background on CLP-based test suite generation.

3.1 Background on CLP-Based Testing
Programming languages allow one to use code to specify how
outputs should be derived from inputs, and in this respect, CLP is
no di�erent from more traditional languages.

What makes CLP interesting for our purposes is that, intuitively,
this same derivation process can be run in reverse, as well as being
run with no initial inputs or outputs whatsoever. �at is, CLP can
be used both to derive the inputs corresponding to some given
outputs, as well as derive entire valid input/output pairs. From a
high level, this is possible with CLP because CLP code describes
a series of logical constraints relating inputs to outputs. �ese
constraints can be e�ciently explored via a multitude of existing
CLP engines (e.g., SWI-PL [19] and GNU Prolog [4]), allowing
for the generation of whole input/output pairs which satisfy the
constraints. �e technical details behind how this is possible is

Exp ::= AddExp

AddExp ::= PrimExp | PrimExp ’-’ AddExp
PrimExp ::= ’0’ | ’1’ | ’(’ Exp ’)’ | ’-’ PrimExp

Figure 1: Small grammar used for running CLP example.

beyond the scope of this discussion, but it has been well-described
elsewhere (e.g., [9, 16]).

�is capability of CLP to derive valid input/output pairs of a
program lies at the heart of CLP-based testing (e.g., [1–3]). For our
speci�c purposes, from a high level this entails �rst implementing
a reference solution in CLP, which only di�ers from a traditional
reference solution in the fact that CLP is used as the implementation
language. �e CLP-based reference solution can then be used to
derive valid input/output pairs which will stress di�erent parts of
the solution. In a straightforward manner, these input/output pairs
can then be applied to testing student solutions, where the input in
a pair speci�es a test input, and the output of a pair speci�es the
expected test result. A speci�c example of how this is done for a
tokenizer is presented in Section 3.2.

�e aforementioned strategy has one weakness, however: we
will never produce a test with no output, as when an invalid input
has been passed to the program. It is not possible to derive invalid
inputs via this mechanism, as by de�nition there is no way to relate
them to valid outputs. For our purposes, this is unfortunate, as
invalid inputs are useful for testing that student error-checking
routines exist and behave as intended; therefore a di�erent approach
is needed for generating invalid inputs.

To this end, we employ mutation-based fuzz testing (e.g, [6]),
which starts with arbitrary valid inputs. �ese valid inputs are then
mutated in some way by intentionally injecting something which
is guaranteed to make it invalid. �e invalid inputs produced are
suitable for testing, and all should trigger error-checking routines
in the student solutions. While more sophisticated approaches are
possible (e.g., generating invalid inputs by construction [3]), the
approach used here is both simple and e�ective for �nding faults
in student solutions. Further discussion of how this is done for a
tokenizer and a parser is presented in Section 3.3.

3.2 Generating Valid Inputs
�is subsection discusses how we use CLP to test language tokeniz-
ers, parsers, and evaluators. �roughout this subsection, we use a
running example based on the grammar shown in Figure 1, with
the corresponding tokens 0 (zero), 1 (one), - (minus), ( (le� paren-
theses) and ) (right parentheses). While this grammar is admi�edly
simple, it serves to illustrate all the applicable core concepts, and it
forms a subset of the grammar used in the case study.

An executable CLP-based tokenizer applicable to tokenizing the
grammar in Figure 1 is presented in Figure 2. �e charToToken
helper procedure simply maps characters to their token represen-
tations. �e tokenize procedure in Figure 2 consists of two rules.
�e �rst rule states that if there are no characters to tokenize, then
there are no tokens produced. �e second rule states that if the

Session 8A: Programming ITiCSE '17, July 3-5, 2017, Bologna, Italy

318



Evaluating Test Suite E�ectiveness and Assessing Student Code via CLP ITiCSE’17, , July 03-05, 2017, Bologna, Italy.

% charToToken: Character, Token
charToToken('0', token_zero).
charToToken('1', token_one).
charToToken('-', token_minus).
charToToken('(', token_lparen).
charToToken(')', token_rparen).

% tokenize: Characters, Tokens
tokenize([], []). % tokenize rule 1
tokenize([SingleChar|Chars], % tokenize rule 2

[SingleToken|Tokens]) :-
charToToken(SingleChar, SingleToken),
tokenize(Chars, Tokens).

Notation: % indicates end of line comments. [] is empty list. [A|B]
is a list, with head A and rest of list B. tokenize takes two

parameters: a list of characters, and a list of tokens produced.

Figure 2: CLP-based tokenizer for language of Figure 1.

character input begins with a single character, then the tokens pro-
duced begin with a single token, where the token is derived from
the charToToken helper procedure. Furthermore, the second rule
recursively calls tokenize to process the rest of the input. While
we have kept this illustrative example as simple as possible, it is
straightforward to add CLP code to allow for whitespace, integers
with multiple digits, and multiple-character tokens, all of which
appear in the actual assignment used in our case study.

When given a valid input list of characters, the tokenize routine
behaves as follows (where lines starting with ?- indicate something
typed by the user at a prompt for a typical CLP engine):
?- tokenize(['1', '-', '0'], Tokens).
Tokens = [token_one, token_minus, token_zero].
?- tokenize(['(', '-', '1', ')'], Tokens).
Tokens = [token_lparen, token_minus, token_one,

token_rparen].

With an invalid input, the engine instead returns false, indicating
the input could not be successfully tokenized. For example, the
engine cannot tokenize the input below, because + is not a valid
token according to the language in Figure 1:
?- tokenize(['1', '+', '1'], Tokens).
false.

As previously discussed, this CLP-based solution can be used
to generate input/output pairs. For example, the code below will
derive all inputs of length 4, along with their corresponding lists of
tokens:
?- length(Input, 4), tokenize(Input, Tokens).
Input = ['0', '0', '0', '0'],
Tokens = [token_zero, token_zero, token_zero,

token_zero] ... % many more elided

�is capability to automatically generate valid inputs lies at the
heart of CLP’s power for test case generation.

�e parser for these tokens using a standard recursive-descent
style can similarly be implemented in CLP, as well as a typical

pre-order-based recursive expression evaluator. Because these com-
ponents do not signi�cantly di�er in style from the aforementioned
tokenizer example, they have been omi�ed for space reasons.

3.3 Generating Invalid Inputs
For generating invalid inputs for the tokenizer, we insert characters
which will never yield valid tokens into an otherwise tokenizable
stream of characters. Speci�cally, we insert $, = (ensuring it does
not follow either > or <), =>, and =<. �e character $ was chosen
arbitrarily as a representative of an unconditionally invalid charac-
ter, and the rest of the characters were chosen as they intuitively
seem more likely to trigger faults in a buggy tokenizer. For gener-
ating invalid inputs for the parser, we �rst produce a valid list of
tokens which can be parsed to form a valid expression. We then
insert an arbitrary valid token into the list, either an integer 0 or 2
(arbitrarily chosen), or any other one of a �nite list of remaining
valid tokens. Because this process may still yield a parsable list of
tokens (as when negating a subexpression), we run the CLP-based
parser on the newly generated input to ensure that it fails, thus
ensuring the input is invalid. While these approaches to generating
invalid inputs for the tokenizer and parser are simplistic, we have
nonetheless found them to be e�ective at �nding faults in student
code.

As for the evaluator, relatively few things act as invalid inputs. By
construction, the AST de�nition in both the Java and CLP reference
solutions does not allow for the construction of ASTs which are in
any way invalid. With this in mind, the only signi�cant edge case
which can be safely deemed “invalid” is that of cases which trigger
division by zero, which is supposed to be checked beforehand by
student solutions. We observed that a signi�cant number of the
generated valid parser outputs (ASTs produced as described in
Section 3.2) would a�empt to perform division by zero. As such,
if we simply re-used these ASTs as inputs to the evaluator, along
with a record of what the AST should evaluate to (be it a number
or a trigger for division by zero).

4 THE PROGRAMMING ASSIGNMENT
�e programming assignment used as a case study was given in a
second-year programming course in advanced application program-
ming. Students were given code for a working interpreter of in�x
arithmetic expressions, with separate Java classes for (1) a �nite-
state-automaton based tokenizer (and classes for various kinds of
tokens), (2) a recursive descent parser that corresponded exactly to
the grammar given and produced an Abstract Syntax Tree (AST)
(and classes for various AST nodes) (3) a straightforward interpreter
based on a pre-order traversal of the AST.

To simplify the assignment, it was assumed that all constants and
expressions would be of type integer. �e given code was capable
of interpreting expressions involving addition (+), subtraction (-),
multiplication (*), integer division (/), unary minus (-), and paren-
theses (()). �e students were also given a grammar in EBNF for
the language supported by the interpreter, shown in Figure 3. �e
students were then required to add support for six relational opera-
tors, (<, <=, >, >=, ==, !=) (each of which returns either 0 or 1 based
on the truth value of the comparison), as well as exponentiation
(**), as re�ected in the modi�ed grammar of Figure 4.
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expr ::= add-expr
add-expr ::= mult-expr ( ( '+' | '-' ) mult-expr ) *
mult-expr ::= primary ( ( '*' | '/' ) primary ) *
primary ::= '(' expr ')' | INTEGER | '-' primary

Figure 3: Given EBNF grammar

expr ::= comp-expr
comp-op ::= '==' | '!=' | '<' | '<=' | '>' | '>='
comp-expr ::= add-expr ( comp-op add-expr ) *
add-expr ::= mult-expr ( ( '+' | '-' ) mult-expr ) *
mult-expr ::= exp-expr ( ( '*' | '/' ) exp-expr ) *
exp-expr ::= primary '**' exp-expr | primary
primary ::= '(' expr ')' | INTEGER | '-' primary

Figure 4: Modi�ed EBNF grammar

�e intent of requiring students to add this particular set of new
features was that they necessitated the students to be able to handle
two cases that are not in the starting code: (1) tokens involving
multiple characters—especially tokens where one valid token is a
pre�x of another valid token (e.g. < pre�x of <=, * pre�x of **),
(2) a right-associative binary operator (exponentiation); all binary
operators in the starting code are le�-associative.

5 THE CASE STUDY
During Fall 2016, students submi�ed solutions which were then
autograded via a traditional handcra�ed test suite composed of
230 tests. �e assignment had an option for either individual or
pair submission. �e study is based on 48 submissions where either
the sole author or both partners gave informed consent.

We then used the CLP-based technique described in Section 3 to
generate a test suite composed of 7,291,812 tests, speci�cally tests
focused on the tokenizer, parser, and evaluator for the grammar
from Figure 4. Where possible, the same test input was reused to
test multiple components. For example, consider the following test
input:

1 - 1

�is input should tokenize, parse, and evaluate successfully down
to the value 0. As such, it can be used as a test each component
individually; that is, the characters serve as a tokenizer test, the
tokens corresponding to it serve as a parser test, and the expression
produced by the parser serves as an evaluator test. If a solution
failed part of the tokenizer to parser to evaluator chain, a correct
intermediate form was substituted so the remaining components
could be individually tested.

We �rst ran both test suites on the instructor’s own Java refer-
ence solution. �e CLP code corresponding to the Java reference
solution was intentionally not coded by the same individual, to re-
duce the likelihood of the Java and CLP reference solutions sharing
common bugs. �e instructor’s solution passed 100% of both the
hand-cra�ed tests and the CLP-generated tests, indicating that the
CLP solution was correct and not marking any outputs incorrectly
as valid or invalid.

We then ran both the hand-cra�ed and the CLP-generated tests
against the student solutions. Our raw data, therefore, consisted

of results for 230 hand-cra�ed tests and just over seven million
CLP-generated tests for each of the 48 student solutions. Looking
at the data, the following conclusions were immediately reached:

• �ere was no case where a solution passed all of the CLP-
based tests, but failed at least one of the handcra�ed tests.

• Of the 40 solutions that passed all of the 230 handcra�ed
tests, only 30 of those passed all 7,291,812 of the CLP-based
tests. �is alone was a clear indication that the CLP-based
suite detected at least one defect that the handcra�ed tests
did not.

Eight of the solutions failed tests on both the handcra�ed test suite
and the CLP-based test suite. Because failures occurred on both
test suites for these solutions, a more sophisticated approach was
necessary in order to draw any meaningful conclusions.

5.1 Test Suite Comparison via Equivalence
Classes

We observe that solutions can be separated into equivalence classes
based on the tests they fail. �at is, it is common for multiple
solutions to fail the exact same set of tests, suggesting that di�erent
solutions share the same underlying defects.

We �rst partitioned the 48 solutions on the basis of which tests
were failed on the handcra�ed tests, which yielded only six equiva-
lence classes. �ese six classes are shown visually in the top half of
Figure 5. �ere were:

• three singleton classes
• one class of two solutions
• one class of three solutions
• one class of 40 solutions—these are the solution that failed

none of the hand-cra�ed tests
While the small number of equivalence classes may raise the

question of plagiarism, follow-up with MOSS [14] showed that
plagiarism alone cannot account for this e�ect.

Partitioning the 48 solutions based on which tests were failed by
the CLP-based test suite resulted in a a further re�nement of these
six equivalence classes were further re�ned into thirteen classes,
as shown in the bo�om half of Figure 5. �e partitions produced
via the CLP-based test suite are represented visually by the arrows
in Figure 5. Each division represents a case where the CLP-based
tests are potentially revealing something that the manual test suite
missed.

�e set of solutions that passes all of the CLP tests contains only
30 solutions; ten of the solutions from the original equivalence class
of 40 failed some of the CLP-based tests, resulting in four additional
equivalence classes. �e original classes of two and three were
also further split into singletons. Each of these splits represents
a case where the CLP-based tests were able to more distinguish
among solutions with �ner granularity, thus potentially revealing
additional defects missed by the manual test suite.

5.2 Code Inspection
We did a manual code inspection of representative solutions from
both sides of each equivalence class split to learn more about what
these splits signi�ed. It is tempting to assume that each such split
indicates a new bug or set of bugs. Our explorations show that
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1 1 1 2 3 40

1 1 1 301 1 1 1 1 1 1 62

manual testing yields
six equivalence classes

CLP based tests further refine those six classes
into thirteen equivalence classes

Figure 5: Equivalence classes of student submissions, based
on which tests they failed.

this is o�en, though not always the case. �e other possibility is
that the solutions have made similar errors but errors that di�er
enough in the particular way they are incorrect, such that they pass
di�erent numbers of tests. However, each division did o�er some
insight into ways in which students approached the problem, and
the types of mistakes they made in their code.

�e original large equivalence class of 40 students is broken
up �ve ways, overall revealing that 10 students who passed all
the handcra�ed tests nonetheless still had bugs in their code (an
indication that if the test suite had been more powerful, there may
have been more rigor and fairness in the grades assigned). �ese
10 were divided into two singletons, a pair, and a group of 6. One
of the singletons was a solution that, although it was correct from
the standpoint of an end user, failed many parser tests because
the testing code relied on the .equals() method of one of the
student-de�ned AST classes to work properly (when comparing
actual vs. expected results), however the student failed to override
this method. �is was a case where the handcra�ed test suite was
de�cient. �e three remaining classes were all characterized by
various errors involving negative exponents, bringing to light the
fact that the instructors had completely overlooked testing for the
cases of zero and negative exponents (focusing the manual tests
instead on the right-associativity of the operator).

Students that correctly handled the exponent operator used a
variety of approaches. Some students computed a value using
Java’s Math.pow() method and then cast the result to an integer
value. Others used loops that did repeated multiplication for non-
negative exponents, and repeated division for negative exponents.
With these loops, some handled x0 as a special case while others
initialized a product value to 1, and then used a loop to repeatedly
multiply by the base of the exponent (so that zero iterations of the
loop naturally returns the correct value).

Figures 6, 7, and 8 show three incorrect approaches to computing
exponents with loops all taken from the group of 40, each passing
a di�erent number of CLP-based tests. Figure 6 correctly com-
putes positive and zero exponents, and has an incorrect a�empt
at negative exponents. Figure 7 correctly calculates positive and
zero exponents, but has no code for negative exponents. Figure 8
calculates only positive exponents correctly.

�ere were two other equivalence classes that were further par-
titioned by the CLP-based testing: an equivalence class of two,

// calculate left ** right
int result = left;
if (right == 0) {

return 1;
}
else if (right < 0) {

for (int i = 0; i < (right * -1)-1; i++) {
result = result / left;

}
return result;

} else {
for (int i = 0; i < right-1; i++) {

result = result * left;
}
return result;

}

Figure 6: Incorrect approach to negative exponents

// calculate base**exp
int result = 1;
for (int i=0; i<exp; i++)

result *= base;
return result;

Figure 7: Does not handle negative exp

// calculate left ** right
int x = left;
for(int i = 1; i < right; i++) {

x = x * left;
}
return x;

Figure 8: Handles neither 0 nor negative exponents

and one of three, each of which was re�ned into singletons by the
CLP-based testing. Code inspection of the class of two solutions
revealed that both of the solutions failed the hand-wri�en tests
for both the new comparison operators and the exponentiation
operator. What distinguished one solution was an error in the �nite
state automaton; it failed to recognize that the * token was a pre�x
of the ** token, and did not set up a state transition from the state
for the multiplication operator to the state for the exponentiation
operator.

�e equivalence class of three solutions was re�ned further
by CLP-generated tests into three singletons. All three solutions
shared a common bug related to an improperly structured if/else.
�e �rst of these had a bug not found in the other two, related to
an issue of == vs. .equals() for objects. All three had problems
related to calculation of exponents, but the third solution handled
an exponent of 0 correctly, in contrast to the �rst two solutions.

Our overall conclusion is that while each division between equiv-
alence classes is an interesting place to look for defects, it is not
necessarily the case that each corresponds to a particular discrete
bug. �is sort of di�culty in de�ning exactly what “bug” means
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is a known problem in So�ware Engineering research (e.g., [10]),
and this work makes this apparent in the context of educational
assessment.

5.3 Test Suite Code Coverage
While the CLP-based test suite exposed clear de�ciencies in the
handcra�ed test suite, we wondered as to whether or not these
de�ciencies could have been discovered ahead of time with a more
traditional approach. To this end, we measured average code cover-
age across all students for the two test suites. For the handcra�ed
test suite, we observed an average line coverage of 77%, an average
method coverage of 74%, and an average branch coverage of 62%.
For the CLP-based test suite, we observed an improvement of three
percentage points for average line coverage (80%), an improvement
of nine percentage points for average method coverage (83%), and
no improvement in average branch coverage (62%). For all coverage
metrics, the relatively low values can be uniformly explained by
the presence of debugging-oriented code, as well as methods which
are good practice to implement but not directly under test (e.g.,
hashCode(), toString(), and equals()). It is di�cult to fairly
prune out such code, because some students did nonetheless use it
during testing.

As shown, while the CLP-based test suite tended to get be�er
code coverage than the handcra�ed test suite, the improvements
are o�en marginal at best. �is leads us to conclude that code
coverage can be a misleading measure of a test suite’s e�ectiveness.
�is motivates the direct measurement of the defect-�nding power
of a test suite, as can be done through our CLP-based approach.

6 CONCLUSIONS AND FUTUREWORK
Our case study shows that a CLP-based approach that generates
millions of test cases can be used to expose weaknesses in a hand-
cra�ed test suite for a programming assignment. Si�ing through
the millions of test cases results might seem daunting, but we have
shown that by focusing on the di�erences among representative
solutions from di�erent equivalence classes, considerable insight
can be gained into test-suite de�ciencies, and student errors.

�ere are two major limitations to this work which we seek to
address in future work: unfamiliarity with CLP programming and
scalability. To address the �rst of these, we propose to develop
a targeted Prolog/CLP tutorial for instructors who want to apply
the technique, or even a domain-speci�c language which compiles
to CLP, allowing instructors to bypass using CLP directly. As for
scalability, the fact that our technique entails generating millions
of test cases raises research, engineering, and deployment concerns.
In our study, we bypassed these concerns by performing an o�ine
analysis a�er the course was over. We are working towards an
open source so�ware framework for managing the computational
requirements of applying this technique at scale, enabling its use
for online formative and summative assessment.
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