Hairball: Lint-inspired Static Analysis of Scratch Projects

Bryce Boe
UC Santa Barbara
bboe@cs.ucsb.edu

Greg Dreschler
UC Santa Barbara

ABSTRACT

Scratch programming has risen in prominence, not only as a po-
tential language for K-12 computer science, but also in introduc-
tory college courses. Unfortunately, grading Scratch programs is
time-consuming, requiring manual execution of each program. Au-
tomation of this process is greatly complicated by the very rea-
son Scratch is an attractive introductory language—the projects are
multimedia in nature, requiring eyes and ears to fully appreciate.

We propose Hairball, an automated system that can be used both
by a student to point out potential errors or unsafe practices, and by
a grader to assist in inspecting the implementation of Scratch pro-
grams. Because automatic analysis will not be able to determine the
sensory effect, Hairball focuses instead on the implementation, in-
cluding safe/robust programming practices, providing a “lint-like”
tool for Scratch.

In this case study, we have created an initial set of Hairball plug-
ins that detect and label instances of initialization of Scratch state,
synchronization between say and sound blocks, synchronization
between broadcast and receive blocks, and use of timing and loops
for complex animation. Our evaluation shows that Hairball is very
useful in conjunction with manual analysis. Overall, Hairball was
actually slightly more accurate than manual analysis at labeling
these instances. Specifically for broadcast/receive, Hairball’s anal-
ysis correctly classified 99% of the 432 instances, manual analysis
only 81%. Overall, if Hairball was only used to identify correctly
implemented instances, with manual analysis for the remainder, it
would remove 76% of the instances for the manual analysis and
assist in the rest, with a false positive rate of less than 0.5%.

Categories and Subject Descriptors
K.3.2 [Computers and Education]: General

General Terms

Languages, Measurement

Keywords

Scratch; automated assessment; static analysis

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SIGCSE’13, March 6-9, 2013, Denver, Colorado, USA.

Copyright © 2013 ACM 978-1-4503-1868-6/13/03...$15.00.

Charlotte Hill
UC Santa Barbara
charlottehill@cs.ucsb.edu

Phillip Conrad
> UC Santa Barbara
gdreschler@umail.ucsb.edu pconrad@cs.ucsb.edu

215

Michelle Len
UC Santa Barbara
mlen@cs.ucsb.edu

Diana Franklin
UC Santa Barbara
franklin@cs.ucsb.edu

1. INTRODUCTION

There is a movement toward less industrial and more engaging
projects and languages for introductory and AP computer science
courses. This movement includes the push for Python with Multi-
media approaches [1,7, 13], the various approaches to the AP CS
Principles course [14], as well as Alice [4] and Scratch [11].

One drawback of visual and auditory projects is that their evalu-
ation can be more difficult than traditional text-based programming
assignments. A common and straightforward practice in evaluating
text-based assignments is to perform functional testing. That is, to
write a script to run all submitted programs and compare their out-
put with solution files [9]. More recently, unit testing frameworks
have been employed as part of automated assessment [6,15]. When
students are given creative freedom with a sensory project—which
is an integral feature of languages such as Alice and Scratch—
there is neither a text-based output file with which to diff, nor a
straightforward way to perform unit testing. For Scratch, for exam-
ple, evaluation typically requires that each project be individually
opened and run. Inspection of the code requires many mouse clicks
and navigation through the stage, sprites, and all of their associated
scripts.

To assist with assessment of Scratch projects, we propose a static
analysis tool. Inspired by the Scratch mascot (a cat), and the con-
cept of lint (a static analysis utility for C that looks for potential
defects [10]), we call our system Hairball. We propose two roles
for Hairball: (1) formative assessment—inspired by lint, we envi-
sion students using Hairball to check their Scratch programs for
potential problems, and (2) summative assessment—accelerating
manual analysis of assignments by verifying the presence and cor-
rectness of certain programming constructs as well as directing the
manual analysis toward potential problems. We have developed a
plugin architecture so that, in Python, Hairball can be extended and
adapted for evaluation of specific assignments.

The challenges we explore in this paper relate to where the line
should be drawn between what Hairball can do with static analysis,
and where manual examination of the Scratch program is necessary.
We find that each has its own strengths. Hairball can quickly dif-
ferentiate between Scratch programs that do, or do not, contain cer-
tain targeted constructs, and is particularly helpful for identifying
instances of particular constructs and implementations that are not
robust but may not immediately cause obvious errors at runtime.
Manual analysis, however, is still needed to evaluate the overall
aesthetic effect and cohesion of a visual or auditory project.

We begin in Section 2 by giving background on automated anal-
ysis in general and Scratch in particular. We then describe our Hair-
ball framework in Section 3. Section 4 describes the Hairball plu-
gins we developed for our analysis. We describe our methodology
and results in Sections 5 and 6. Finally, in Section 7 we conclude.

2. BACKGROUND AND RELATED WORK

Providing automation for analyzing programs is not a new con-
cept. ASSYST is an automated assessment system that performs
end-to-end, or input/output, type testing of submissions [9]. Both
the Marmoset system by Spacco et al., and the Web-CAT system,
by Edwards, perform testing of code using student written unit
tests [6, 15]. All of the aforementioned tools supplement the feed-
back the student receives with code coverage analysis and feed-
back from static analysis tools such as FindBugs by Cole et al. [3].
Douce et al. performed a more detailed analysis of existing auto-
mated assessment systems [5]. The problem with existing assess-
ment systems is that they are not applicable to Scratch programs.

Scratch is a block-based programming language from MIT [11].
Programs consist of 2-dimensional interactive animations. Objects,
or sprites, move on the screen as a result of user input or scripts in
the program. Sound and video can also be integrated into Scratch
programs. Scratch was designed to allow students to learn com-
puter science projects while employing great creativity in their work.
This creative freedom is one of the reasons that Scratch projects are
challenging to analyze.

An additional challenge in Scratch analysis is that Scratch pro-
grams are developed and run within a graphical user interface (GUI).
Independent segments of code, known as scripts, are associated
with Scratch sprites (e.g. the Scratch Cat) and tied to a trigger-
ing event. There is no central “main” point of execution. Instead,
programs might begin when a parallel set of scripts beginning with
a “when green flag clicked” hat block are triggered.

At least two other projects have looked at automated Scratch
analysis. Adams and Webster describe using scripts and custom
modifications to the Squeak source code of Scratch to perform their
quantitative analysis of programs from the Imaginary Worlds sum-
mer camp [1]. Additionally, Burke and Kafai developed Scrape [16]
as a visualization tool to aid humans in understanding patterns across
Scratch files. Scrape was used to assess Scratch projects produced
in a middle school writing workshop [2]. Scrape is useful in an-
swering questions such as:

e How many programs use loops?
e How many loops are present in each program?

e What level of nesting does the program use?

Hairball has two purposes. Like Scrape, Hairball can help ver-
ify the use of the required constructs of an assignment. The main
contribution of Hairball, however, is the framework and set of avail-
able plugins that support more sophisticated analysis. We want to
answer questions not just about the use of Computer Science (CS)
constructs, but about the competence demonstrated for different CS
concepts. Hairball can be used to answer questions such as:

e Which programs contain unmatched broadcast and receive
blocks?

e Which programs contain broadcast/receive events that result
in infinite loops?

e Which programs do not properly initialize the start state?
e Which programs do not properly implement complex anima-

tions (requiring the application of timing, costume changes,
motion, and loops)?

216

3. DESIGN CONSIDERATIONS

We have two goals in designing Hairball. Our first goal is to per-
form analysis on a set of Scratch programs automatically. Without
automated analysis, each Scratch program must be opened manu-
ally in order to be inspected and executed. This manual process
is time-consuming and error-prone. Our second goal is that Hair-
ball is easily extendable so that new Scratch analysis plugins can be
created with only a basic amount of Python experience, and anyone
can make use of available plugins.

Plugin Architecture

We used the object-oriented features of Python to develop a base
class from which Hairball plugins can be derived. Python was cho-
sen due to the authors’ experience with Python and its increased
adoption in introductory CS classes. However, Python was mainly
chosen due to the open source Python package Kurt that provides
simple access to all the elements contained within a Scratch pro-
gram, i.e., the images, sounds, stages (backgrounds), sprites and
most importantly the scripts [12].!

Implementing a Hairball plugin simply requires extending the
base class and overloading a single method. The method’s sole
parameter is a handle to the Scratch program (from Kurt) and the
method should return a dictionary containing the results of the de-
sired static analysis. In principle, any type of static analysis of a
Scratch program that can be described algorithmically can be im-
plemented as a Hairball plugin in a straightforward manner by any-
one with basic Python programming skills. The following code
provides an example of a simple Hairball plugin that counts the
number of times each Scratch block is used in a program.

class BlockCounts (HairballPlugin) :
def analyze(self, scratch):
blocks Counter ()
for block, _, _ in iter_blocks (scratch):
blocks.update ({block: 1})
return blocks

4. HAIRBALL PLUGINS

In this section we describe four Hairball plugins written to per-
form Scratch static analysis. The plugins were designed to analyze
projects submitted as part of our two-week interdisciplinary Ani-
mal Tlatoque summer camp [8]. Notice that some of the traditional
topics, i.e., variables and conditionals, are not represented, and that
loops are represented in a very specific way (defined as animation).
The plugins target the CS concepts used in the camp’s cumulative
project, an interactive movie about an animal. For this project, stu-
dents were to demonstrate state initialization, use of broadcast and
receive blocks, synchronization between say and sound blocks, and
creation of complex animation. While these plugins were devel-
oped for our summer camp, each provides valuable feedback that
is generally useful both as a lint-like tool for individual developers
of Scratch programs and for others who are tasked with analyzing
numerous Scratch programs.

Each Hairball plugin for the camp strives to evaluate whether, or
to what extent, the program demonstrated competence in an area.
These plugins attempt to discover instances of the aforementioned
concepts contained within a Scratch program and label each in-
stance as correct, semantically incorrect, incorrect, or incom-
plete. Instances labeled “correct” should indicate that the concept

'As part of our work, we made a few contributions that are now a
core part of the Kurt Python package.

| Category | Relative | Absolute |
Costume next costume switch to costume x
Visibility show/hide
Orientation | turn clockwise x degrees point in direction x
Position move X steps, go to X,y, gotox,y
glide z secs to x,y, etc. gotoxy
Size change size by x% set size to x%
Background next background switch to background x

Table 1: Five categories of initial state, along with example rel-
ative and absolute modification blocks

was implemented correctly. Instances labeled “semantically incor-
rect” should indicate that the concept was implemented in a way
that may not always work when executed. Intuitively, instances
labeled “incorrect” should indicate the concept was implemented
incorrectly. Finally, instances labeled “incomplete” should indi-
cate that only a subset of the required blocks for a concept were
discovered. A single program may contain multiple instances of a
concept distributed across any or all of the labels. Ideally instances
labeled ““correct” should not require manual analysis, whereas in-
stances with any other label should be inspected manually.

Initial State

In any program, correctly setting the initial state is important. In
Scratch programs, the significance is different. Scratch programs
are comprised of animations, and in the runtime environment, they
may run from start to finish and be restarted again. Alternatively,
they may be stopped in the middle and restarted again. We want to
determine statically whether the code runs the same way in these
two events. For reasons described below, the environment is differ-
ent than in traditional programming.

The first problem is where to start the analysis. In traditional
programs, execution starts at “main”. Scratch programs have no
such globally-defined starting point. We taught our students to start
their programs using the green flag button, so the starting point for
our evaluation is the “when green flag clicked” block.

The most complex problem, and the problem that introduces the
possibility of error into our analysis, is that sprites are placed on
the stage during implementation thus giving them an implicit set
of attributes, which we will refer to as the base attributes. Explicit
initialization for a particular attribute, e.g., position or orientation,
is only required when one of the program’s scripts modifies the at-
tribute. Thus, the challenge is distinguishing segments of scripts
that perform initialization from those that perform general modifi-
cation. To discover instances of initialization, we first determine
the set of blocks that can be considered initialization blocks and
then we restrict the location such blocks can appear in a script. We
call this location the “initilization zone”

Attribute modifying Scratch blocks can be labeled as “relative”
or “absolute”. Relative Scratch blocks alter the attribute based upon
its current value whereas absolute Scratch blocks directly set the
attribute. As such only absolute blocks can be considered initial-
ization blocks. Table 1 shows our categorization for a subset of
attribute modifying Scratch blocks.

For an absolute block to be considered an initialization block,
it must appear in the initialization zone. We define the initial-
ization zone only for scripts beginning with a “when green flag
clicked” block. The initialization zone begins at the start of the
script and ends when either a relative block or a broadcast block is
encountered. We take a conservative approach when encountering
blocks contained within loops or conditionals—absolute blocks are

217

ignored due to the possibility that the block is not executed, and
relative blocks continue to signify the end of the initialization zone
due to the possibility that the block is executed.

The initialization plugin considers a modified attribute of a sprite
as correctly initialized when an absolute block for the same at-
tribute exists in the initialization zone. Instances are labeled as
incorrect otherwise. Non-modified attributes are ignored. Finally,
despite this plugin’s ability to detect unnecessary initialization, we
did not include it as part of our analysis.

Say/Sound Synchronization

Synchronization between a speech bubble (say block) and sound
file (play sound block) is not straightforward in Scratch. The de-
sired behavior is that, at the same time, a speech bubble appears
with the message, and a sound file plays of a voice speaking the
message. When the sound is complete, the speech bubble disap-
pears.

Achieving this effect is complicated by the timing semantics of
the two forms of the say block, and the two forms of the play sound
block in Scratch. One form of the say block places the speech bub-
ble on the screen indefinitely (until replaced by another say block,
or “erased” with an empty say block), while the other puts a speech
bubble on the screen for n seconds (and, as a side-effect, delays ex-
ecution of the script for n seconds.) Similarly, there are two forms
of the block for playing a sound clip: “play sound until done” plays
the sound synchronously, while “play sound” plays the sound asyn-
chronously.

There are two methods to produce the desired effect. The first is
to asynchronously play the sound via the “play sound block™ fol-
lowed by a “say for” block with a duration equal to the elapsed
time of the sound. Unfortunately, the timing must be manually de-
termined and needs to be updated whenever the sound file changes.
The second, is to use a “say” block to display the message, fol-
lowed by a “play sound until done” block, ending with an empty
“say” block to clear the previous speech bubble. The campers were
taught the latter method as the correct approach.

This plugin detects instances of this concept by looking for se-
quential say and sound blocks and verifies the instances are imple-
mented using the appropriate method. A correct instance contains
the previously described three blocks in the proper order. Instances
following the method requiring manual timing are labeled seman-
tically incorrect. Instances that have both say and sound blocks
but do not match either of these methods are labeled incorrect, and
isolated uses of say or sound blocks are labeled incomplete.

Broadcast and Receive

One use of Scratch’s broadcast blocks is to trigger the execution of
other sprites’ scripts beginning with the appropriate receive block.
We taught our campers the broadcast and receive concept in the
context of two animal sprites conversing, where each sprite would
signal the other’s turn via broadcasting an event. In the camp’s
cumulative project, campers demonstrated an understanding of the
broadcast and receive concept by triggering scene changes in their
interactive movie.

The broadcast and receive plugin verifies that for each broadcast
or receive event, there is a broadcast block and at least one cor-
responding receive block. Such instances are labeled correct. All
instances with a broadcast block appearing in the same script with
another instance’s broadcast block are labeled as semantically in-
correct. All other instances are labeled incomplete. Note that this
plugin does not use the incorrect label.

Complex Animation

We have a very specific definition of the term complex animation
for purposes of assessment. We use this term to refer to animation
involving integration of costumes, motion, timing, and repetition
control structures such as loops. This definition of complex anima-
tion is to distinguish from, for example, the “glide to” block built
into Scratch. One example of complex animation is realistic motion
of sprites that represent people and animals. E.g., people walking,
birds flying and snakes slithering. Creating such animations re-
quires the correct integration of several Scratch and CS concepts.
For example, creating an animation sequence where a sprite spins
around requires integration of loops, rotation, and timing.

A necessary component of a complex animation instance is ei-
ther rotation blocks, or motion blocks paired with costume change
blocks. We define a complex animation instance as either a loop
containing these necessary components or a sequence of these nec-
essary components, since a sequence can be considered an unrolled
loop. In order to be labeled correct, an instance must also make use
of a Scratch block that introduces a delay, otherwise the instance
is labeled semantically incorrect. The plugin additionally labels
instances that use sequences instead of loops as semantically in-
correct because the student did not demonstrate competence in the
CS concept of loops. Finally, if the program is missing any critical
element, e.g., repetition, it is labeled incomplete.

S. METHODOLOGY

In the remainder of this paper, we will use Hairball to refer to
both the framework and the set of plugins described in section 4.

We tested Hairball on the projects submitted during our two week
summer camp. There were five assignments total, with a distribu-
tion of concept requirements. For example, complex animations
were taught toward the end of the camp, so they were only present
in the last two assignments whereas initialization was present in
all [8].

We first perfomed a manual analysis on all 58 of the submitted
Scratch projects. Three members of our project staff independently
analyzed the first five projects submitted for a given assignment
using a common rubric. We discussed any discrepancies in our
scores and after coming to agreement, we analyzed the remaining
projects. Once again, any score discrepancies were reconciled.

Hairball was then programmed to match the methodology agreed
upon by the staff members when classifying the concepts. Hairball
was run on all of the projects. When there were discrepancies be-
tween Hairball and the manual analysis, there was a second manual
analysis to determine which was correct—Hairball or the manual
analysis. In the results section, we compare the results between
Hairball and the reconciled manual analysis using the second anal-
ysis results as a ground truth.

Because the projects are sensory in nature (auditory, visual), we
are not attempting to create Hairball to replace manual analysis.
Instead, we are automating the identification of the “easy” cases in
order to accelerate analysis. The methodology is not perfect be-
cause Hairball was informed by the manual analysis - sort of like a
fourth entity whose answers needed to be reconciled in the group.
As the results show, Hairball did an excellent job of identifying
issues that all three of our staff members missed.

6. RESULTS

In this section, we present the results of using Hairball to assist
in determining the level of competence demonstrated by students’
Scratch projects for several CS concepts. For each concept, we will
compare the labels Hairball assigned to instances of the concept

218

400

Initialization Instances

[y = (%) [N} w w
o [%a) o wu o Ul
©d o0 6 o © o

v
(=]

Ground Truth Manual Hairball

W Correct M Semantically Incorrect ™ incorrect Incomplete

Figure 1: Compares the initialization instance labels. Note that,
this analysis used only the “correct” and “incorrect” labels.
Manual analysis resulted in 32 false positives, and Hairball re-
sulted in 33 false negatives.

with those assigned via manual analysis. We will use the second
manual analysis as the ground truth, and look at both false posi-
tive and false negative rates for Hairball and the manual analysis.
Although our results include the labels “semantically incorrect,”
“incorrect,” and “incomplete” to demonstrate that Hairball can be
used for more than binary labeling, our assessment focuses on in-
stances that are either labeled “correct” or not. Thus, we consider
a false positive to be an instance that was labeled correct, when in
fact it is not, and a false negative to be an instance that is actually
correct, but was not labeled as such. For manual analysis both false
positives and false negatives represent the inaccuracies of manual
assessment. For Hairball, false negatives can be considered warn-
ings, i.e., they are used to indicate the need for additional manual
analysis. However, any false positives produced by Hairball are
cause for concern.

6.1 Initialization

We begin with initialization. Recall from section 4 that Hairball
looks for attributes that are modified, and expects to find a corre-
sponding absolute block in the initialization zone in order to con-
sider an instance correct. The manual analysis, on the other hand,
only involved running the program twice, and confirming that the
two executions matched.

Figure 1 provides the classification of the 348 initialization in-
stances discovered across the 58 projects. Of the 65 instances that
Hairball and the manual analysis labeled differently, Hairball was
correct for 32 of the instances. Many of the remaining 33 instances
were not possible for Hairball to label as correct due to initializa-
tion taking place outside of the initialization zone. For example,
an initially hidden sprite, can correctly have its position initialized
just before the sprite becomes visible. In spite of this discrepancy,
these results overall indicate that Hairball is successful at pointing
out problems in initialization.

6.2 Sound/Say Synchronization

Figure 2 shows the results of identifying and labeling instances
of synchronization between speech bubbles and sound files. Man-
ual analysis identified 237 correct instances, and a total of 31 other
instances. Hairball, identified 229 correct instances and 37 others.
Manual analysis and Hairball failed to find two and four instances
respectively.

= = N [w
g 8 8 & 8

Say and Sound Synchronization Instances
ul
=}

0 I : I , I

Ground Truth Manual Hairball

W Correct M Semantically Incorrect ™ incorrect Incomplete

Figure 2: Compares the say and sound synchronization in-
stance labels. Manual analysis and Hairball failed to detect two
and four instances respectively and manual analysis resulted in
4 false positives.

500
450

0 I : I , I

Ground Truth Hairball

Broadcast and Receive Instances
= G-‘ [] m w Lwn =y
8 88 88 8 8

v
(=]

Manual

W Correct M Semantically Incorrect ™ incorrect Incomplete

Figure 3: Compares the broadcast and receive instance labels.
Manual analysis failed to discover 12 instances, and resulted in
79 false positives. Hairball detected 100% of the instances with
three false positives.

Comparison with the ground truth results in four false positives
for manual analysis. Hairball labeled its instances with 100% ac-
curacy. Two of the four instances undetected by Hairball were la-
beled incomplete by manual analysis. Hairball failed to detect these
instances due to a separation of the say and sound blocks with a
broadcast block. To detect such instances, Hairball would need to
additionally inspect all scripts triggered by the broadcast message
to ensure none of them interfered with either the speech bubble or
the playing of the sound file.

6.3 Broadcast/Receive

Figure 3 shows the results of detecting and labeling broadcast
and receive instances. Here, the manual analysis differed from
Hairball by additionally verifying that the intended action is per-
formed for correct instances. Hairball is limited to static analysis,
thus it is unable to perform this additional step.

Overall, Manual analysis failed to discover 12 instances, and
identified 388 correct instances, of which 79 were false positives.
Hairball discovered 100% of the instances with zero false nega-

219

Complex Animation Instances
[y [w B ul (=] ~
1S3 o =] (=] =] o =]

(=}

Ground Truth Manual Hairball

W Correct M Semantically Incorrect ™ incorrect Incomplete

Figure 4: Compares the complex animation instance labels.
Manual analysis failed to detect three instances whereas Hair-
ball found 11 items that were determined to not be instances of
complex animation. Hairball resulted in two false negatives.

tives. However, three of the 312 instances Hairball labeled as cor-
rect were false positives. Although these three instances represent
“correct” usage of broadcast and receive blocks, the ground truth
analysis determined the evaluation behavior to be incorrect.

6.4 Complex Animation

Complex animation was especially difficult for Hairball to de-
tect. As Figure 4 shows, the manual analysis was 100% accurate
at labeling the 46 instances found, and only failed to detect three
instances. Hairball, on the other hand, discovered 11 incomplete
instances that the ground truth analysis determined to not be in-
stances at all. Excluding these instances, Hairball identified 28 cor-
rect instances, and 21 others with only two false negatives.

Hairball identified too many instances of complex animation due
to the subjective nature of what is considered an animation. For ex-
ample, Hairball detects an animation according to where the loops
and repetition are located. Several times, Hairball detected two
separate animations, when manual analysis determined that those
two actions were working together to create a single larger anima-
tion. Additionally, Hairball considered a move, wait, and change
in appearance as an incomplete animation instance. In such cases,
manual analysis recorded nothing.

6.4.1 Summary Results

Figure 5 shows three sets of results across all four CS concepts
and the overall average. The first is the mislabel rate of manual
analysis and Hairball. Percentages closer to zero indicate higher
accuracy. We can see that Hairball is actually slightly more accu-
rate overall than manual analysis, largely in part of its accuracy in
labeling broadcast and receive instances.

The second set of results are the rate of false positives. Manual
analysis, with an overall false positive rate of 11.7%, indicates that
manual analysis is quite error prone. On the other hand, Hairball’s
false positive rate of 0.4% strongly indicates that instances Hairball
labels as “correct” can be trusted.

Finally, the third set of results are the rate of false negatives. The
lack of false negatives for manual analysis makes sense, consid-
ering Hairball was created according to the first manual analysis.
Although Hairball has an overall false negative rate of 13.5%, we
believe this rate to be acceptable due to the fact that four out of five
instances in our ground truth set were labeled “correct”.

25

20

i‘.lﬁ

Hairball
Mislabeled

Percent

e

Manual False Hairball False Hairball False
Positive Positive Negative

Manual
Mislabeled

M |nitialization M Broadcast & Receive ™ Say/Sound Sync

Complex Animiation = Average

Figure 5: Provides a summary of the percent of mislabeled,
false positive, and false negative instances from manual analy-
sis and Hairball for each of the four CS concepts and the av-
erage. The “Manual False Negative” category was omitted as
manual analysis resulted in zero false negatives. The y-axis is
truncated for the smaller values, thus the tallest bar should ex-
tend to 40.7%. Missing bars represent 0 %.

7. CONCLUSIONS AND FUTURE WORK

We presented a case studying showing a new static analysis tool,
Hairball, that provides an extendable framework for automatically
analyzing Scratch programs. In addition, we provide an initial set
of plugins that analyze the implementation of Scratch programs
for competence in four areas: initialization, broadcast and receive,
say and sound synchronization, and animation. Our evaluation
shows that Hairball is extremely usful in identifying correctly im-
plemented instances, with a false positive rate of less than 0.5%.
Overall, the mislabel rate of Hairball is less than half that of man-
ual analysis. Therefore, we propose Hairball as an addition to, not
replacement of, manual analysis.

We have made the complete Hairball source code available under
the open source simplified BSD license. The source is hosted on
github at github.com/ucsb-cs—education/hairball.

Our future work entails writing Hairball plugins suitable for wide-
spread summative assessment in both AP CS Principles courses,
and other summer camps. Finally we want to launch a web service
that provides a convenient way to utilize Hairball for formative as-
sessment of individual Scratch projects.

8. REFERENCES

[1] J. C. Adams and A. R. Webster. What do students learn about
programming from game, music video, and storytelling
projects? In SIGCSE ’12, pages 643-648, 2012.

[2] Q. Burke and Y. B. Kafai. The writers’ workshop for youth

programmers: digital storytelling with scratch in middle

school classrooms. In Proceedings of the 43rd ACM
technical symposium on Computer Science Education,

SIGCSE ’12, pages 433-438. ACM, 2012.

B. Cole, D. Hakim, D. Hovemeyer, R. Lazarus, W. Pugh, and

K. Stephens. Improving your software using static analysis

to find bugs. In Companion to the 21st ACM SIGPLAN

symposium on Object-oriented programming systems,

languages, and applications, OOPSLA 06, pages 673-674.

ACM, 2006.

(3]

220

[4] S. Cooper, W. Dann, and R. Pausch. Teaching objects-first in
introductory computer science. In Proceedings of the 34th
SIGCSE technical symposium on Computer science
education, SIGCSE *03, pages 191-195. ACM, 2003.

C. Douce, D. Livingstone, and J. Orwell. Automatic
test-based assessment of programming: A review. J. Educ.
Resour. Comput., 5(3), Sept. 2005.

S. H. Edwards. Rethinking computer science education from
a test-first perspective. In Companion of the 18th annual
ACM SIGPLAN conference on Object-oriented
programming, systems, languages, and applications,
OOPSLA °03, pages 148-155. ACM, 2003.

A. Forte and M. Guzdial. Computers for communication, not
calculation: Media as a motivation and context for learning.
In Proceedings of the Proceedings of the 37th Annual Hawaii
International Conference on System Sciences (HICSS’04) -
Track 4 - Volume 4, HICSS ’04, pages 40096.1—,
Washington, DC, USA, 2004. IEEE Computer Society.

D. Franklin, P. Conrad, B. Boe, K. Nilsen, C. Hill, M. Len,
G. Dreschler, and G. Aldana. Assessment of computer
science learning in a scratch-based outreach program. In
Proceedings of the 44th SIGCSE technical symposium on
Computer science education, SIGCSE "13. ACM, 2013.

D. Jackson and M. Usher. Grading student programs using
assyst. In Proceedings of the twenty-eighth SIGCSE
technical symposium on Computer science education,
SIGCSE °97, pages 335-339. ACM, 1997.

S. C. Johnson. Lint, a ¢ program checker. In COMP. SCI.
TECH. REP, pages 78-1273, 1978.

J. Maloney, M. Resnick, N. Rusk, B. Silverman, and

E. Eastmond. The scratch programming language and
environment. Trans. Comput. Educ., 10(4):16:1-16:15, Nov.
2010.

T. Radvan. Kurt.
https://github.com/blob8108/kurt, September
2012.

B. Simon, P. Kinnunen, L. Porter, and D. Zazkis. Experience
report: Cs1 for majors with media computation. In
Proceedings of the fifteenth annual conference on Innovation
and technology in computer science education, ITICSE 10,
pages 214-218. ACM, 2010.

L. Snyder, T. Barnes, D. Garcia, J. Paul, and B. Simon. The
first five computer science principles pilots: summary and
comparisons. ACM Inroads, 3(2):54-57, June 2012.

J. Spacco, D. Hovemeyer, W. Pugh, F. Emad, J. K.
Hollingsworth, and N. Padua-Perez. Experiences with
marmoset: designing and using an advanced submission and
testing system for programming courses. In Proceedings of
the 11th annual SIGCSE conference on Innovation and
technology in computer science education, ITICSE *06,
pages 13-17. ACM, 2006.

U. Wolz, C. Hallberg, and B. Taylor. Scrape: A tool for
visualizing the code of scratch programs. Poster presented at
the 42nd ACM Technical Symposium on Computer Science
Education, Dallas, TX., March 2011.

(3]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

