
Assessment of Computer Science Learning in a
Scratch-Based Outreach Program

Diana Franklin†, Phillip Conrad†, Bryce Boe†, Katy Nilsen‡, Charlotte Hill†, Michelle Len†,
Greg Dreschler†, Gerardo Aldana§, Paulo Almeida-Tanaka†, Brynn Kiefer†, Chelsea Laird♯,

Felicia Lopez§, Christine Pham†, Jessica Suarez§, Robert Waite†
† Department of Computer Science

‡ Gevirtz School of Education
§Chicana/o Studies Department

♯Biology Department
UC Santa Barbara

ABSTRACT

Many institutions have created and deployed outreach programs for
middle school students with the goal of increasing the number and
diversity of students who later pursue careers in computer science.
While these programs have been shown to increase interest in com-
puter science, there has been less work on showing whether partic-
ipants learn computer science content.

We address two questions, one specific, and the other more gen-
eral: (1) “What computer science did our middle school students
learn in our interdisciplinary two-week summer camp?” (2) “How
can computer science concepts be assessed in the context of Scratch-
based outreach programs”? We address both questions by present-
ing the design of our summer camp, an overview of our curriculum,
our assessment methodology, and our assessment results.

Though the sample size is not statistically significant, the re-
sults show that a two-week, interdisciplinary, non-academic sum-
mer camp can be effective not only for engaging students, but also
for imparting CS content. In just two weeks, with a curriculum not
entirely focused on computer science, students displayed compe-
tence with event-driven programming, initialization of state, mes-
sage passing, and say/sound synchronization1 . We have employed
assessment methodologies that avoid written exams, an approach
both outreach and classroom-based programs may find useful.

Categories and Subject Descriptors

K.3.2 [Computers and Education]: Computer and Information
Science Education; K.4.m [Computers and Society]: Miscella-
neous—Diversity and Outreach

General Terms

Design, Human Factors

1A timing issue between say bubbles and sound in Scratch

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

Keywords

diversity, K-12 education, outreach, assessment, Scratch

1. INTRODUCTION
The desire to expose more students to computer science has led

to the development of many educational activities[15, 9, 12, 5] and
outreach programs to broaden participation in computer science [4,
3, 10] . Unfortunately, these outreach programs can reach only a
small segment of the population. To truly broaden participation in
computing, we must help computer science find a place at the table
in K-12 schools—and that requires the development of standards,
curricula, and assessments.

Previous work shows that Scratch-based outreach can be effec-
tive at increasing students’ interest in computing [19, 10] . With
this paper, we contribute to a small but growing body of work as-
sessing the effectiveness of Scratch for teaching CS content—in our
case, in the context of a two-week interdisciplinary summer camp
for middle school students, based on Scratch programming [15]
presented along with culturally-relevant non-CS themes aimed at
broadening participation among underrepresented groups.

We present this work both to (1) address the question of whether
outreach activities can really teach computer science (“Sure, they
had fun, but did they learn anything?”) and (2) provide a starting
point for further development of assessment for Scratch program-
ming; techniques that can be adapted not only to assessing outreach
activities, but also in any computing curriculum based on Scratch
programming.

We found that in just two weeks of our interdisciplinary camp,
students displayed competence in several areas, including event-
driven programming, initializing state, synchronization between au-
dio and visual elements as well as between objects, and some pro-
ficiency in creating complex animations requiring the integration
of several concepts including loops. Our assessment techniques
resulted in fairly low-overhead note-taking and program analysis,
with very little reliance on written exams.

The rest of the paper is organized as follows. We provide a brief
summary of related work in Section 2. Section 3 describes our
camp and curriculum. Sections 4 and 5 describe our assessment
methodology, and the results of our assessment. Finally, Section 6
describes future work.

2. RELATED WORK
We are adding to a small but growing body of work assessing

student learning with Scratch programming—work that spans a va-
SIGCSE’13, March 6–9, 2013, Denver, Colorado, USA.

Copyright © 2013 ACM 978-1-4503-1868-6/13/03...$15.00.

371

riety of approaches, settings, and contexts. A general framework
for such assessments is described by Brennan and Resnick [7].

Adams and Webster[1] conducted a thorough analysis of pro-
grams from nine years of CS-centric summer camps for middle and
high school students. By inspecting which and how many blocks
of each type were used, they answered interesting questions about
how the project types, gender, etc. influenced the CS constructs
used.

A series of papers [16, 17, 11] assessed learning of CS concepts
through Scratch in the school setting, examining, among
other things, whether the programming approaches learned through
Scratch were beneficial or detrimental to later success in CS. Their
methodology used traditional classroom tests.

Burke and Kafai [8] found that students following a similar cur-
riculum to ours (digital story-telling) in a school setting (vs. our
summer-camp setting) over seven weeks demonstrate competence
in several key CS concepts (event-driven programming, synchro-
nization/coordination of multiple threads, and loops). Like us, they
had a small sample size (10).

Lewis and Shah [14] describe an assessment of Scratch program-
ming quizzes in a summer enrichment course focused primarily on
math and computer science and containing high-achieving students.
They administered paper-based quizzes on the 2nd through 10th
day of instruction in a 12 day course.

Building on this prior work, our work has two major differences.
First, we adapt the assessment methodology to a non-academic
camp setting with a broad spectrum of students (academically and
culturally). We cross-reference help received with the programs to
more accurately reflect the competence, and we analyze the imple-
mentation of the Scratch programs deeply to rate the competence
displayed. Second, we show that with just a two-week, interdisci-
plinary, non-academic camp program, students demonstrate com-
petence in many CS areas.

3. CAMP AND CURRICULUM
Animal Tlatoque, our two-week summer camp, was initially

designed with two specific goals: (1) to attract a target audience
of middle school students from underrepresented groups with non-
CS themes[2, 13, 18] that appeal to both parents and children (at
which we have succeeded [10]), and (2) to engage participants in
interdisciplinary activities that allow them to learn about computer
science and develop skills for computational thinking in the context
of those non-CS themes. This past year, we took on a third goal:
(3) to assess the learning of CS content that took place during the
camp.

The Summer 2012 instance of our camp had 35 campers. Ten of
these were enrolling in the camp for a second or third year; these
campers progressed through the Scratch curriculum on an acceler-
ated track. Our assessment efforts are focused on students partici-
pating in the camp for the first time; of these we had IRB permis-
sion and informed consent to report data for 22 campers.

3.1 Curriculum Design Constraints
The curriculum design was heavily influenced by two constraints:
(1) The interdisciplinary themes influenced the computer sci-

ence content of the lessons because of the culminating project—a
digital story-telling project.

Week 1 lessons consisted entirely—and only—of lessons that
taught skills and concepts needed to complete that final project.
Concepts not strictly needed for that project—such as user-defined
variables and conditional control flow—were deferred to Week 2,
and students had less opportunity to practice them.

(2) Assessment influenced the structure of the lessons. Each

Initial State

Lesson ev
en

t-
dr

iv
en

pr
og

.

si
ze

or
ie

nt
at

io
n

ba
ck

gr
ou

nd

vi
si

bi
lit

y

co
st

um
e

po
si

tio
n

sy
nc

hr
on

iz
at

io
n

br
oa

dc
as

t/r
ec

ei
ve

co
m

pl
ex

an
im

at
io

n

1) Scratch Basics X X

2) Conversations X X X X X

3) Scene Changes X X X X X X X

4) Complex Anim. X X X X X X

Final project X X X X X X X X X X

X: item required by the project’s checklist.

Table 1: Computer science concepts assessed through Scratch

projects.

lesson has two parts: a warm-up exercise (not assessed) in which
students learn one or more new CS concepts with substantial scaf-
folding and support, and a small project (assessed) in which stu-
dents apply their new knowledge to a similar, but new, problem.

Our core Scratch curriculum is summarized in Table 1. The
columns to the right of the table show the major CS concepts that
formed the learning objectives, and the targets of assessment,
namely: Event-Driven Programming, Initial State, Synchroniza-
tion, Broadcast/Receive, and Complex Animation. In addition, we
offered an additional lesson covering interactive input, user-defined
variables and conditional control flow (if/then/else) and an optional
project involving a side-scroller game. The remainder of this sec-
tion describes each of these lessons in more detail.

3.2 Lesson Descriptions
Students work in pairs at a single computer. Each pair is assigned

an endangered animal from Mesoamerica that is used in several
projects.For reasons of space we omit detailed descriptions of the
warm-up exercises.

Lesson 1: Scratch Basics familiarizes students with the basic
elements of Scratch programming, including concepts such as the
stage, sprites, the way blocks are combined into scripts and two
core CS concepts.

Event-driven programming is used in interactive programs, us-
ing blocks such as “When Green Flag
clicked” and “When Sprite clicked” to determine when actions
should occur.

Initial state, in particular its initialization, was previously ob-
served (anecdotally) to be a common source of bugs. Sprites have
certain attributes (e.g.position, orientation) that, if changed during
the program, need to be initialized if the “green flag” is clicked
again to restart after completion or the “red flag” is clicked.

Lesson 1 Project: Name Poem [20] is based on the camper
pair’s assigned animal—the name of their animal is spelled out,
and when each letter is clicked, a descriptive word appears starting
with that letter appears. For example, the character “fish” might
become Friendly, Intelligent, Shy, Hairless.

Lesson 2: Conversations teaches multi-sprite synchronization
through “conversations” between two characters, where the dia-
log is simultaneously in say bubbles and sound, requiring a tricky
Scratch solution. This introduces two new CS concepts.

Broadcast/Receive is used to control timing between sprits. In
Scratch programming, a collection of scripts can be associated with
each sprite, and each script runs as a separate parallel thread. To
create order between threads, students use broadcast/receive blocks.
This can be considered an example of the more general CS concepts
of “message-passing” and “event driven programming”.

372

Say/Sound Synchronization is used when displaying a “say”
bubble – the kind used to show dialog in comics – at the same
time as an audio file narrating the text. It turns out not be nearly
as straightforward to implement as one might hope. We found the
most robust and pedagogically straightforward solution to be plac-
ing an indefinite say bubble on the screen, playing the sound until
finished, and then removing the say bubble using a blank say bub-
ble. This approach emphasizes an important CS concept—one so
basic, that we sometimes forget that novice programmers have to
learn it—the importance of putting blocks in the correct sequence

to achieve the desired effect.
Lesson 2 Project: Animal Conversation allows students to

teach others about their animals. Students split up and pair with
others, implementing a conversation between their two animals in
which they are trying to learn about each other. This reinforces
their new knowledge in synchronization.

Lesson 3: Scene Changes expands on message passing and se-
quential instructions by introducing visibility(hide/show) and back-
grounds in order to make scene changes.

Lesson 3 Project: Mayan Conversation reinforces message
passing, sequential instructions, and visibility (hide/show) to make
a conversation in the Mayan language. Students are given the first
two glyphs and recordings. They sequence them like scenes.

Lesson 4: Complex Animation teaches students how to create
realistic motion (e.g. people walk, birds fly, snakes slither, fish
swim), and requires several CS concepts to complete.

Complex Animation goes beyond the simple ”glide to” block
provided by Scratch. To make the motion realistic requires costume
changes, motion, timing, and repetition control structures (loops).

Lesson 4 Project: Name Poem w/ Motion has students add
several complex animations to their name poem from lesson 1, in-
cluding one of their animal.

Culminating Project: Animating a Mesoamerican Animal

Myth involving their animal, containing at least three scenes and
two characters. A checklist contained require elements to ensure
that the resulting Scratch program would allow us to assess CS con-
cepts taught.

Lesson 5: Interactive Conversation was taught after the stu-
dents had already started the culminating project, and consisted of
a series of warm-ups introducing input, variables, and conditionals
(if/then/else).

Optional Project: Side-Scrolling Game contains a main char-
acter (Scratch the cat) who must battle foes such as the banana-
throwing monkey, a field of thorns, bees, and a giant bat, with
nothing more than foul-smelling fish as weapons. Although too
complex for students to code on their own, students explored parts
of implementation. Due to the lack of a project, we used a writ-
ten quiz-like assessment (Table 4) for the concepts taught in this
lesson.

4. ASSESSMENT METHODOLOGY
We faced several challenges in designing an assessment plan for

our curriculum. The major hurdles were (1) the short timescale
(this is a 2-week camp that combines several subjects, so time is
very tight) (2) the student perspective that camps are supposed to
be fun, so anything that reminds them of "school" (e.g. anything
that smells like a "test") is to be avoided, and (3) our use of pair
programming for all projects (preventing data-gathering by indi-
vidual student).

In particular, we did not control for prior knowledge using pre-
tests, nor did staff members take extensive notes because of nega-
tive camper feedback last year. We did ask about prior program-
ming experience on a survey, but found this to be inaccurate be-

Explanation

0 Validation: Students want confirmation, not information
1 Where: Only needed help navigating the Scratch gui
2 What: Only needed a reminder of the name of the concept
3 How: Given name of concept, still needed help to complete task
4 Reteach: Had to reteach the entire lesson (concept and execution)

Table 2: Help levels recorded in field notes.

cause campers differ in their interpretation of what “programming"
is. Instead, we relied on informal discussions with campers, and
only two reported specific programming knowledge (one in
Scratch). For this reason, we are not stating definitively that stu-
dents learned these concepts within the two-week camp, but that
they demonstrated competence by the end of the two-week camp.

Our major artifacts are the completed projects, but it is not suf-
ficient to analyze these in isolation, since completion of the project
does not necessarily imply competence in the material. Through-
out the camp, we had at least one staff member available for every
six students, so students were able to receive ample help, including
being stepped through the solution, if necessary.

Therefore, we use a combination of analysis of the artifacts and
information from the staff members about what help they gave the
students on the projects associated with each lesson, as well as the
culminating project. Note that we do not assess competence based
on completion of the warm-up lessons—we assess only the final
projects in each lesson.

While working, students have access to a set of Scratch Refer-
ence Cards, including a relevant subset of the original MIT Scratch
Cards as well as cards we designed for each lesson. These are tied
directly to the project in the lesson, and they are used as reference
for the smaller projects and culminating projects. If a student com-
pletes the project using only Scratch cards, we consider that the
student learned/understood the material.

4.1 Staff Notes
Campers have staff members available for help. Each time a

student asks a question related to a concept that has been taught,
staff members explore the level of understanding of the student.
The levels of help are listed in Table 2. The goal of the staff member
is to first attempt to give help as if the student required only level 0
help, then proceed to level 1, etc., until the student is able to figure
out the solution. As long as at least level 1 help was given, the staff
member records the level of help given and the concept covered.
Some also recorded level 0 help.

4.2 Project Analysis
Each assessed project has a list of concepts required to com-

plete it, as shown in Table 1. For the competence, we looked at
the projects in two ways—the execution and the implementation.
For each category, we have four levels. The top level is “perfect”—
looking at the project playing and the implementation. The next
level is that the project itself looks fine when played, but the im-
plementation is not robust or did not apply the computer science
concept correctly (i.e. synchronization has a potential timing issue
or the student used repetitive code where a loop would have been
more appropriate). The next level is that there is a noticeable defect
when running the project (i.e. two sounds play at the same time, or
the animation was too fast to see). The lowest level is used when
the implementation is absent or incomplete—i.e. a critical piece is
missing.

Our assessment involved several phases. First, for each project,
three students independently scored the first five programs manu-

373

6

8

10

12
In

st
a

n
ce

s
o

f
g

iv
in

g
 h

e
lp

0

2

4

L1 L2 L3 L4 S L1 L2 L3 L4 S L1 L2 L3 L4

0 1 2 3 4

Broadcast/Receive Say/Sound Synchronization Animation

In
st

a
n

ce
s

o
f

g
iv

in
g

 h
e

lp

Figure 1: Field notes taken by staff members.

ally, discussed and reconciled their scores, independently scored
the rest of the programs, and reconciled the rest of their scores.
Our Scratch static analysis tool, Hairball, was developed to deter-
mine the scores as a fourth entity [6]. Whenever Hairball’s results
disagreed with what the manual assessors concluded, a final, more
detailed manual assessment occurred to determine which was cor-
rect.

5. ASSESSMENT RESULTS
In this section, we present the results of our assessment. We pref-

ace these results with a frank recognition of the fact that the pop-
ulation under study is very small—results are reported for only 10
campers pairs. Our purpose in presenting these results, therefore,
is not to claim anything “statistically significant”. Rather it is to
provide a model for integrating assessment of learning into the de-
sign of a Scratch-based curriculum—one that can be followed both
by future designers of outreach programs, and in-school curricula
alike. This allows us to not only gain insights into student com-
petence in certain subjects, it can tell us if students were rushed
through particular assignments.

In our camp, because of the complex integration of different sub-
jects and the scheduling involved, students were a little bit rushed
with the projects for Lessons 3 and 4 (Mayan Conversation and
Name Poem with Motion).

5.1 Field Notes
Each staff member recorded a note for each interaction that re-

quired them to help the students. Figure 1 shows the level of help
given to each pair for each concept. For the most part, students
asked validation question such as: “Should I do this?” and the staff
member merely confirmed the students’ own knowledge. Only a
few pairs needed what we consider substantive help—help levels 3
and 4. We believe this is for one of three reasons. First, by placing
the warm-up exercise immediately before the transfer project, stu-
dents are able to ask questions and practice once a short time before
being expected to complete it by themselves.

Second, because students were working in pairs, only one of
the two needs to understand the material. Pairs were assigned
randomly by age and school, so we had no opportunity to match
them by learning speed / skill level. Anecdotally, we did find that
some pairs contained one strong partner and one weak partner.
Finally, students could be completing the projects incorrectly or
avoiding challenging implementations. We will see that this is true

Lesson and Event Descrption Results

(1) click green flag⇒character says something 8/10 80%

(1) click letter⇒letter says word 9/10 90%

(2) click green flag ⇒conversation starts 10/10 100%

(4) click letter⇒turn into animal 6/11 55%

Final Project: click green flag⇒ story begins 10/10 100%

Table 3: Assessments of event-driven programming.

20

30

40

50

60

70

In
it

ia
li

za
ti

o
n

 I
n

st
a

n
ce

s

0

10

Lesson 1 Lesson 2 Lesson 3 Lesson 4 Story
Initialized Initialized if played through Not initialized Help given

Figure 2: Initialization results broken down by project.

for several pairs when implementing animations in the culminating
project.

5.2 Event-Driven Programming
Table 3 shows part of our results of assessing understanding of

event-driven programming, i.e. implementing scripts that are trig-
gered by specific events (the other part being the results for Broad-
cast/Receive, discussed later in this section.)

In the project for Lesson 1, students were required to implement
event-handling for both green flag and sprite clicked events—80%
and 90% were successful. By Lesson 2, students has mastered
“green flag” events; 100% correctly started the required actions this
way as instructed.

We are not showing results for Lesson 3, because very few stu-
dents completed that Lesson successfully. We believe that this, and
the fact that only 55% of the students correctly implemented the
assessed click event in Lesson 4 have more to do with extrane-
ous factors; at this point in the camp, students may have felt more
rushed. In addition, in Lesson 4, they may have been concentrating
more on realistic motion (presented later) rather than this checklist
item.

5.3 Initialization
We performed two tests for initialization. The first is to manually

open the program and run it twice from beginning to end to see if
the second execution matches the first. The second is to use our
Hairball tool to assist in detecting if something is not initialized
before it is used, leading to incorrect execution if it is stopped in
the middle and restarted. Hairball is not perfect—it flags possible
changes that do not have an initialization in the beginning of the
program, but it misses some valid later initializations, so a manual
check is still necessary.

We first show initialization broken down by project in Figure 2.
The X axis shows the project, and the Y axis shows initialization
errors or successes. Initialization attempts are broken down by cat-
egory, not sprite, so each project has 6 initialization checks.

374

10

20

30

40

50

P
ro

g
ra

m
s

a
ss

e
ss

e
d

0

10

bckgrnd costumes orient. position size visibility

Initialized Initialized if played through Not initialized Help given

P
ro

g
ra

m
s

a
ss

e
ss

e
d

Figure 3: Initialization results broken down by category.

Figure 4: Results for Sound/Say Synchronization.

For the most part, students remembered to initialize items that
needed to be reset when the project was played to completion and
restarted. As the projects became more complex, there were more
opportunities to forget initialization, especially if the program ran
correctly twice in a row. For each of Lesson 3 and the story, two
groups were retaught initialization (one of which was the same
group both times). We do not have a record of which type of initial-
ization was retaught, so we deducted all initialization opportunities.

We now present the initialization errors by category in Figure
3. There was not one particular category that dominated the er-
rors. Instead, the errors were fairly evenly distributed across all the
categories except for backgrounds, where there were virtually no
errors.

5.4 Sound/Say Synchronization
Figure 4 shows that few of our students had any trouble with

the concept of say/sound synchronization. The issues that did arise
were evident on playback, so given additional time to work on the
project, the pair may have been able to detect and fix the bug. There
were a few students who did not choose to implement synchronized
say/sound blocks in the culminating project; they chose other ways
of incorporating sound.

5.5 Broadcast/Receive
Results for Broadcast/Receive are shown in Figure 5. These re-

sults show that it is often the case that a project has one incomplete
Broadcast/Receive, either because they did not clean up their dead

Figure 5: Results for Broadcast/Receive.

3

4

5

In
st

a
n

ce
s

F
o

u
n

d

0

1

2

Correct Potential Timing Issue Current Timing Issue Critical Piece Missing

Lesson 4 Story

In
st

a
n

ce
s

F
o

u
n

d

Figure 6: Results for Animation.

code or they did not quite complete the project. In Lesson 3, espe-
cially, many students were rushed in their implementations. We see
that for the Story, almost all students used Broadcast/Receive prop-
erly, except for one group that required level 4 help and another that
had timing issues due to two sequential broadcasts.

5.6 Complex Animation
The checklist for the name poem with motion and the culmi-

nating project specifically indicated that campers should include
Complex Animation in the form of realistic motion of their ani-
mal in their projects. Most pairs added realistic motion to their
name poem, but four had current timing issues, and two were miss-
ing something critical in the code. For the culminating project,
we found that many students chose not to implement realistic mo-
tion, instead using the “glide” block to slide their sprite across the
screen. In the end, only three pairs out of ten successfully imple-
mented complex animation in their culminating project.

5.7 Side-Scroller Warmup Assessment
Table 4 shows the questions and results from the side-scroller

quiz. Most of the students assessed knew when to employ costumes
and background changes (91% and 82%). 73% of the students
knew to use a repeat or forever block to make the bees keep go-

375

Question Answer Results

If you want the cat rather than a panda, what would you change?† sprite or costume 100%

If you want the cat to go into a cave rather than a temple, what do you change? scene or background 82%

How do you make the monkey turn red? color effects or costume 91%

How do you make the bees keep going up and down? repeat or forever 73%

How can you keep track of how many times the bat has been hit by a banana? variable 73%

How do you make the bat disappear on the third hit, not the first hit? if 28%

†Note that the first question on the assessment worksheet contained a typo—the words “cat” and “panda” should have been reversed.
We are reporting the question as it actually appeared on the questionaire.

Table 4: Written assessment of concepts for side-scroller.

ing up and down and the same number knew that a variable should
be used to keep track of how many times the bat had been hit. Only
three pairs (28%) recognized that the difference between disappear-
ing on the third hit rather than the first hit required an if block.

6. CONCLUSIONS AND FUTURE WORK
Despite the constraints of our camp—a two-week, non-academic,

interdisplinary, “fun oriented” camp—we were able to perform as-
sessments demostrating that students attained competence with sev-
eral computer science concepts. In just two weeks, with a curricu-
lum not entirely focused on computer science, students displayed—
and we were able to assess—competence with event-driven pro-
gramming, initialization of state, message passing, and say/sound
synchronization.

Further, we have adapted and piloted a technique for asssessing
computer science competence that relies very little on written as-
sessments in the context of Scratch programming. Our technique
uses a scaffolded curriculum, with warm-up lessons, projects to
assess mastery, measurment of help given, and both automated and
manual examination of the Scratch programs produced by students.
Our approach can be adapted for other Scratch-based curricula,
and/or other Computer Science concepts.

As with similar research, we have only a small sample size—
thus, future work may include applying this assessment technique
with a larger sample size. This could take place across multiple
instances of an outreach program or in the context of a K-12 CS
curriculum implemented within the regular school day.

We also note that, outreach programs, while valuable for the stu-
dents that participate, reach only a small segment of the population.
It is likely that integration of computer science into K-12 standards
and curricula will have a broader impact. By pairing our curricu-
lum with a curriculum teaching variables, loops, and conditionals,
students can be exposed to a broad set of topics that can be applied
to many different subjects required in schools today.

7. ACKNOWLEDGMENTS
This work is supported by the National Science Foundation BPC

Award CNS-0940491 to Franklin, Aldana, and Conrad.

8. REFERENCES

[1] J. C. Adams and A. R. Webster. What do students learn about
programming from game, music video, and storytelling
projects? In SIGCSE ’12, pages 643–648, 2012.

[2] G. Aikenhead. Students’ ease in crossing cultural borders
into school science. Science Education, 85(2):180–188,
March 2001.

[3] S. Alliance. The stars alliance: A southeastern partnership
for diverse participation in computing. NSF STARS Alliance
Proposal. http://www.itstars.org/.

[4] I. Arroyo et al. Effects of web-based tutoring software on
students’ math achievement. In AERA, 2004.

[5] T. Bell, I. H. Witten, and M. Fellows. Computer Science

Unplugged. 2006.

[6] B. Boe, C. Hill, M. Len, G. Dreschler, P. Conrad, and
D. Franklin. Hairball: Lint-inspired static analysis of scratch
projects. In SIGCSE ’13, March 2013.

[7] K. Brennan and M. Resnick. New frameworks for studying
and assessing the development of computational thinking. In
AERA 2012, 2012.

[8] Q. Burke and Y. B. Kafai. The writers’ workshop for youth
programmers: digital storytelling with scratch in middle
school classrooms. In SIGCSE ’12, pages 433–438, 2012.

[9] W. Dann, S. Cooper, and R. Pausch. Making the connection:
programming with animated small world. ITiCSE, 2000.

[10] D. Franklin, P. Conrad, G. Aldana, and S. Hough. Animal
tlatoque: attracting middle school students to computing
through culturally-relevant themes. In SIGCSE ’11.

[11] M. Gordon et al. Spaghetti for the main course?:
observations on the naturalness of scenario-based
programming. In ITiCSE ’12, 2012.

[12] C. S. Hood and D. J. Hood. Teaching programming and
language concepts using legos. In ITiCSE, June 2005.

[13] C. Lee. Why we need to re-think race and ethnicity in
educational research. Educational Researcher, 32(5):3–5,
June 2003.

[14] C. M. Lewis and N. Shah. Building upon and enriching grade
four mathematics standards with programming curriculum.
In SIGCSE ’12, pages 57–62, 2012.

[15] J. Maloney et al. The scratch programming language and
environment. Trans. Comput. Educ., 10(4):16:1–16:15, Nov.
2010.

[16] O. Meerbaum-Salant et al. Learning computer science
concepts with scratch. In ICER ’10, pages 69–76, 2010.

[17] O. Meerbaum-Salant et al. Habits of programming in scratch.
In ITiCSE ’11, pages 168–172, 2011.

[18] J. Moschkovich. A situated and sociocultural perspective on
bilingual mathematics learners. Mathematical Thinking and

Learning, 4(2/3), 2002.

[19] P. A. G. Sivilotti and S. A. Laugel. Scratching the surface of
advanced topics in software engineering: a workshop module
for middle school students. In SIGCSE ’08, 2008.

[20] U. Wolz et al. Computational thinking via interactive
journalism in middle school. In SIGCSE, 2010.

376

