
Simple Reliable Multicast for Parallel Processing in Extended LANs

Jaiwant Mulik Phillip Conrad Yuan Shi
jmulik@unix. temple.edu

Temple University
Department of Computer and Information Sciences

Philadelphia, PA, 19122, USA

Abstract

A typical problem for a parallel processing system in-
volves broadcasting large amounts of data from a master to
several worker programs. This paper describes a reliable-
multicast method to reduce the communication costs of this
distribution. Our solution relies on a tuple-space mecha-
nism as implemented in the Synergy system. We present re-
sults showing that even a simple implementation of reliable
multicast can dramatically improve pelformance.

1. Background: The Synergy system

The tuple space model was introduced in the LINDA [2]
system. Synergy [4] is a tuple-space based SIMD paral-
lel processing system that runs on a network of worksta-
tions. From a programmer’s point of view, Synergy con-
sists of three types of entities: exactly one master, one or
more workers, and one or more tuple spaces. The master
and workers are user programs, while tuple spaces are ob-
ject repositories to/from which the master and workers can
writehead objects called tuples. A tuple is a named data ob-
ject. Once put into a tuple space, tuples are persistent until
removed. Another example of a tuple-space based system
is LIMBO [11 which uses reliable multicast in conjunction
with tuple spaces to provide Quality of Service management
in mobile-aware distributed applications.

A parallel solution to a problem is implemented in Syn-
ergy by having the master divide the problem space into
sub-problems, and then put one or more tuples for each sub-
problem into tuple space. The workers then obtain tuples
from the tuple space, compute the (partial) solution and re-
turn the solution to the same or another tuple space. The
master, after reading all the solution tuples, generates the
complete solution and returns the result. Currently, work-
ers use Synergy system calls to read tuples from the tuple
space over a network. Prior to this work, Synergy system
calls used only unicast communication.

0-7695-0912-6100 $10.00 0 2000 IEEE

2. Multicasting

In parallel computing, the total solution cost is the sum of
the computation and communication costs. For many prob-
lems the total cost is dominated by the initial problem dis-
tribution cost, i.e. the time to distribute the sub-problem and
relevant data to the workers. In cases where a large propor-
tion of the sub-problem data to be distributed is identical,
multicasting can improve performance.

In unicast-
ing, reliability is acheived by having the sender retrans-
mit. However, unicast reliability techniques are not scalable
for multicast due to the well-known ack-implosion prob-
lem. Many sophisticated reliable multicast algorithms have
been investigated [3]. In this paper, we show that significant
gains can be obtained even with a minimal use of multicast.

Specifically we have exploited two features of Synergy:
(1) All data to be distributed is present in the tuple space
and the tuple space is persistent. (2) Workers normally go
to the tuple space to get their sub-problems. We shift the
responsibility of reliability from the sender to the receiver.
The idea can be summarized as:

IP Multicasting is inherently unreliable.

0 MASTER. (1) Generate the data and place in tuple
space. (2) Wait for acks from workers indicating readi-
ness. (3) Multicast the data.

0 WORKER (1) Send ack to master indicating worker
is ready. (2) Receive data via multicast. (3) If the next
expected tuple is not received within an (application-
specific) interval then retrieve the lost data from tuple
space using regular Synergy functions.

3. Experiment Design and Analysis of Results

The experiment involved distributing an N x N integer
matrix to P processors, as in a parallel implementation of
matrix multiplication. We calculated the average delay over
ten repetitions of the experiment for each combination of

437

http://temple.edu

A

z
8
t

F

-
E"

4 6 8 10 12 14 16
Number of Processors

Figure 1. Performance: Reliable Multicast

I

U

Y I
F E"

j p 700 i..
i

..........; ;.+: : \ I .

500

400

300

200

100
I I I I

4 6 8 10 12 14 16
Number of Processors

Figure 2. Performance: Unicast

N = {400,600,800) and P = {4,6,8,10,12,14,16),
first using UDP multicast and then UDP unicast packets.
Each packet contained one matrix row and 4 bytes of appli-
cation header, plus the normal IP+UDP headers (28 bytes).

Fig. 1 indicates that for multicast the average total time
taken is relatively constant as P increases. By contrast,
Fig. 2 charts the amount of time taken to deliver data us-
ing multiple unicasts. Fig. 3 shows the performance gain
(reduction in latency) obtained when reliable multicast is
used instead of unicast. Our data indicates that multicast-
ing can distribute data to workers faster than having each
worker 'pull' the data from tuple space. Note that the av-
erage time taken to deliver a fixed amount of data using
unicast increases with P, while the average time taken to
deliver this data using multicast does nor increase with P
(except in the case of P=16). Hence not only is reliable
multicast faster than reliable unicast but is also inherently
more scalable. Performance and scalability are key require-
ments of any distributed computing architecture.

U

8
t
Y

E F

500

400

300

200

loo

n -
4 6 8 10 12 14 16

Number of Processors

Figure 3. Performance Gain

Regarding P=16, note that on a LAN, UDP data losses
are caused mainly due to context switches that lead to flow
control errors. This is visible in Fig. 1; note the dramatic in-
crease in time for N=800 and P=16. In this case the work-
ers lost between 2% and 26% of all multicast data.

4. Summary and Future Work

This paper describes the performance benefits that can
be obtained from a simple modification to an existing dis-
tributed system: adding a feature for multicast distribution
to an implementation of tuple space. Our data shows that
a dramatic performance improvement can be obtained from
even a very simple application of multicast techniques.

A more sophisticated approach to solving this problem
might take the form of a replicated tuple space, using reli-
able multicast protocols to maintain consistency among the
replications of the tuple space on various systems. Such an
approach would introduce a layer of indirection between the
master and the workers, allowing the master to start trans-
mitting without waiting to synchronize with all the workers.

References

[l] G. S. Blair, N. Davies, A. Friday, and S. P. Wade. Quality of
service support in a mobile environment: an approach based
on tuple spaces. In IWQOS'97, New York, May 1997.

[2] D. Gelemter. Generative communication in Linda. ACM
Transactions in Programming Languages, 1 (7):80,112, Jan-
uary 1985.

[3] B. Levine and J. Garcia-Luna-Aceves. A comparison of reli-
able multicast protocols. ACM Multimedia Systems Jouml ,
6(5):334-348, August 1998.

[4] Y. Shi. Building worthy parallel applications using
networked computers - a tutorial for synergy v3.0.
http://www.cis.temple.edu/-shi/synergy.html,
January 1995.

438

http://www.cis.temple.edu/-shi/synergy.html

