
COMPUTER 
!i!llKS 
ISDN SYSTEMS 

ELSEVTER Computer Networks and ISDN Systems 29 ( 1997) 675-699 

An analytic study of partially ordered transport services l 
Rahmi Marasli 2, Paul D. Amer *, Phillip T. Conrad 3 

Computer and Information Sciences Department, University of Delaware, Newark, DE 19716, USA 

Accepted 30 October 1996 

Abstract 

This paper presents an analytic model for investigating the throughput, delay and buffer utilization characteristics of 
partially ordered transport services. We analyze the effects of packet and ack losses as well as applications’ order require- 
ments on overall system performance. The analytic model is verified by comparing its results against those of an OPNET 
simulation model. Analytic results show that for applications that can tolerate some reordering in the delivery of objects, 
use of partially ordered service instead of ordered service provides important buffer utilization and delay improvements, 
particularly as the loss rate increases and the order requirements of applications decrease. In terms of throughput, it makes 
no difference which service (i.e., ordered, partially ordered, unordered) an application uses. Analytic study also shows 
that by judicious choice of sender’s transmission order, overall system performance can further be improved in a partially 
ordered service. @ 1997 Elsevier Science B.V. 

Keywords: Transport layer protocol; Protocol design and analysis; Partially ordered service; Quality of service; Multimedia 

1. Introduction 

Computer networks traditionally offer either ordered (e.g., TCP) or unordered (e.g., UDP) transport service. 
Some applications such as multimedia do not need an ordered service since they can tolerate some reordering 
in the delivery of the objects. The degree of reordering should be within the specific limits of the applications; 
otherwise problems result at the application layer such as increased complexity, increased buffering, and loss of 
synchronization. For such applications, neither ordered nor unordered service is a perfect fit. Ordered service 
insists on delivering all data in sequence even if it results in higher delays and buffer utilization. Unordered 
service, on the other hand, minimizes delay and buffer utilization, but provides no order guarantees. If an 
application with some order constraints uses an unordered transport service, the application programmer is 
burdened with the task of implementing mechanisms for object ordering. 
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To achieve better tradeoffs between order and other quality-of-service (QoS) parameters, and to satisfy 
the minimal order requirements of applications, partially ordered transport service has been proposed [ 1,361. 
Partially ordered service fills the gap between ordered and unordered service by allowing applications to specify 
the delivery order of objects in the form of a partial order. Since partially ordered service does not insist on 
delivering all objects in sequence, it can provide lower delays and buffer utilization than ordered service, while, 
at the same time, guaranteeing an application’s partial order requirements. 

The authors are designing a new transport-layer protocol, called Partial Order Connection (POC), that 
provides partially ordered and partially reliable 4 service to its users [ 1,3,6]. POC enhances an unreli- 
able/unordered network service just enough to allow applications to specify controlled levels of loss and 
reordering in the delivery of the objects. Thus, both the order and the reliability requirements of the applica- 
tions are generalized in POC. Previous study has formally confirmed the intuitive results that, in general, a 
partially reliable service provides lower delay and higher throughput than a reliable service [ lo]. This paper 
analytically studies the partially ordered aspect of POC. This analytic study basically has the following goals: 
( 1) To obtain quantitative measures on how well partially ordered transport service performs over various 

network environments, and to gain understanding of how various network and application parameters 
(e.g., loss level of the network layer, sender’s transmission order, order requirements of the applications, 
etc.), in general, affect system performance. 

(2) To show the performance improvements by using partially ordered service over ordered service, and thus, 
motivate the use of partially ordered service against ordered service. 

The paper is organized as follows: Section 2 introduces a partially ordered service and motivates it with 
two example applications. Section 3 introduces an analytic model for partially ordered service and discusses 
computational results. The analytic computations are verified by an OPNET-based simulation in Section 4, and 
the main results are summarized in Section 5. 

2. Why use a partially ordered service? 

Refs. [ 1,6] introduce the development and motivation for a partially ordered protocol/service including 
several examples. A summary of these findings is provided here. 

Essentially, a partially ordered service can be employed and is motivated whenever a total order on the 
delivery of objects is not mandatory. When two objects can be delivered to a transport service user in either 
order, there is no need to use an ordered service that delays delivery of the second one transmitted until the first 
arrives. In general, the order requirements of objects in a partially ordered service can be represented by using a 
partialorderPOovertheset [N] ={1.2,..., N}, where N is the total number of objects to be communicated, 
and x + y in F’O signifies that object x must be delivered to the receiving application prior to object y. 

2.1. A simple application for partially ordered service: Screen refresh 

Consider an application that does a “screen refresh” on a workstation screen/display containing multiple 
windows (see Fig. 1). In refreshing the screen from a remote source, objects (icons, still or video images) that 
overlap one another should be refreshed from bottom to top for optimal redisplay efficiency. Objects that do 
not overlap may be refreshed in any order. Therefore, the way in which the windows overlap induces a partial 
order. 

4 Partial reliability refers to the notion that individual objects may have different QoS requirements with respect to loss; some may require 
reliable transport service (guaranteed no-loss), while for others, unreliable transport service (best-effort) may suffice. Partially reliable 
transport service provides a middle ground between these two in which the loss tolerance of each object can be specified individually. 
References [ 1,3,4,6] consider partial order and partial reliability in juxtaposition, while this paper focus solely on partial order. 
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Fig. 1. Screen refresh. 

Consider the four cases in Fig. 1. A sender wishes to refresh a remote display that contains four active 
windows (objects) named { 12 3 4). Assume that the windows are transmitted in numerical order and that 
the receiving application refreshes windows as soon as the transport layer delivers them. If the windows are 
configured as seen in Fig. 1 (A), an ordered service (sometimes referred as a FIFO channel) is required. In this 
case, only one ordering is permitted at the destination. If due to loss or disorder in the network layer, window 2 
is received before window 1, the transport layer must buffer window 2 and deliver it only after window 1 
arrives and is delivered. 

At the other extreme, if the windows are configured as in Fig. 1 (D), an unordered service would suf- 
fice. Here any of 4! delivery orderings would satisfy the application since the four windows can be re- 
freshed in any order. Each of these orderings represents a linear extension (LE) of the partial order (PO). 
As notation, four ordered objects are written 1 -X 2 4 3 + 4, and unordered objects are written us- 
ing a parallel operator: 1112]]3](4 (x]]y means there is no dependency relation between objects x and y). 
Figs. 1 (B) and 1 (C) demonstrate two (of many) window configurations that call for a partial order de- 
livery service. In these cases, two and six linear extensions, respectively, are permitted at the destina- 
tion. 

2.2. Using partially ordered service for remote document retrieval 

Ref. [ 41 describes a prototype client/server application for the retrieval and display of multimedia documents 
from a remote server using Partial Order Connection version 2 (POCR), a partially ordered and partially reliable 
transport protocol providing coarse-grained synchronization support. In this system, multimedia documents with 
temporal characteristics are described using a Prototype Multimedia Specification Language (PMSL). PMSL 
gives an author the ability to specify the synchronization, (partial) order, and (partial) reliability requirements 
of the objects that make up a temporal multimedia document. The application serving these documents can 
extract these requirements from such a specification and communicate them to the transport layer, which then 
provides the necessary QoS and synchronization support. 

This simplifies application development, since the document display client need not contain complex mech- 
anisms for object synchronization and reordering. It also allows for graceful degradation, since the document 
can be presented “perfectly” when network conditions allow, and in a less than perfect but nevertheless ac- 
ceptable manner when network conditions degrade. Finally, the use of partial order and partial reliability 
rather than ordered/reliable or unordered/unreliable service allows better QoS tradeoffs between qualitative 
parameters such as order/reliability and quantitative parameters such as delay, buffer utilization and through- 
put. 
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Unreliabls NET 

Fig. 2. Architecture. 

3. Analytic model 

In this section, we present an analytic model for partially ordered transport services. Through this model, we 
study the effects of packet and ack losses as well as various levels of applications’ order requirements on the 
performance of different services (i.e., ordered, partially ordered, and unordered). Verification of the analytic 
model using simulation will be described later in Section 4. 

The analytic study confirms our expectations that a partially ordered service provides lower delay than 
an ordered service while simultaneously requiring less buffer space at the receiver. Results also show that 
in a partially ordered service, the choice of the sender’s transmission order further impacts overall system 
performance. 

3.1. Introduction to model 

To abstract partially ordered service’s usage, we use a three layer architecture which includes only the network 
layer, the transport layer, and the user application layer (see Fig. 2). 

The transport layer protocol provides a partially ordered service as follows: POC Sender takes a packet from 
User Sender, transmits the packet over the network, then sets a timer and buffers the packet. If the corresponding 
ack does not return from POC Receiver within its timeout period, POC Sender retransmits the packet. When a 
packet is received at POC Receiver, if the packet is deliverable (i.e., if all packets that this packet depends on 
have already been delivered), then it is delivered to User Receiver; otherwise it is buffered. Upon delivering 
any packet, POC Receiver checks its buffers for additional packets that may have become deliverable as a result 
of the delivery; these packets are delivered also. 

By assumption, User Sender submits constant size packets to POC Sender. In general, given a partial order 
with variable object sizes, we can obtain an equivalent partial order with constant object size by fragmenting 
large objects into smaller constant size ones that are chained to each other. 5 Thus, having constant packet sizes 
in the computations should not limit the effectiveness of our results. 

In the network layer (called Unreliable NET), the loss of a packet or an ack is characterized by a Bernoulli 
process, and a constant end-to-end network delay is assumed. It is also assumed that POC Receiver never 
runs out of buffer space. The full set of assumptions about the system in general can be found in Table 2. 
These simplifying assumptions, while in some cases are strong (e.g., Bernoulli losses), are needed for the 
mathematical analysis of the model. 6 The results obtained under these assumptions are useful in comparing 
various types of services, and in analyzing trends. We expect the effects of these assumptions to be similar 
across various levels of services (i.e., ordered, partially ordered, unordered). These expectations are, in part, 
supported by simulation results (see Sections 3.4.1 and 3.5). 

5 The last fragment may have to be padded. 
h Even with these simplifying assumptions, the mathematical analysis is complicated and we have only approximate computations for 

certain target values. 
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Table I 
System variables 

System variables 

$KKk 
f&/“i 
RT 
h 
P 
9 
MS 
BufR 
p.wc‘ 

Definitions 

packet transmission time 
one-way delay for a packet defined as “rWck + one-way network layer delay” 
round trip delay defined as “tp,.. + (2 * one-way network layer delay + ack transmission time )” 
timeout period for retransmissions 
probability of losing a packet within Unreliable NET 
probability of losing an ack within Unreliable NET 
number of buffers at POC Sender 
number of buffers at POC Receiver 
probability of successful packet and ack transmission defined as “( 1 - p) * ( 1 - q)” 

Table 2 
Assumutions 

Assumptions 

I p and q are fixed and independent for each packet and ack transmission 
2 RT is constant and to,,, = RT 
3 Packets and acks have constant sizes 
4 tour is an integral multiple of rpace 
5 Processing time of a packet or an ack at each side is negligible 
6 Bufs = t,,t/tp?& and BufR = 00 
7 Only selective acks are used 
8 All packets are ready at User Sender, or equivalently, a packet arrives at User Sender at every tLack 

9 User Sender submits packets to FW Sender in an order that respects the given PO 

The system variables are defined in Table 1. Throughout this paper, we refer to this system as NET. Thus, 

NET = (tpack t tdetay 1 RT, tOUtr~,q,Buf~,Buf~,p.~Ucc,A), 

where tpack, . . . , psucc represent the system variables, and A stands for the assumptions given in Table 2. Unless 
otherwise stated, all subsequent values and computations in this paper refer to this given NET with linear 
extension LE of partial order PO being used as POC Sender’s transmission order. 

3.2. Definitions 

In this paper, we analyze the throughput, delay and buffer utilization characteristics of partially ordered 
transport services. This analysis is done by computing the performance statistics defined in Table 3. Throughput, 
A, is the rate at which POC Receiver delivers packets to User Receiver. End-to-end packet delay, Ten&, is the 
expected time for packet a to reach to User Receiver once it is given to POC Sender. For many applications such 
as real time audio and video, lower delay is more important than higher throughput. Finally, expected buffers 
used at the receiver, R-Buff, indicates the average memory resources utilized at POC Receiver. In general, it is 
desirable to have higher A, lower Tend,, and lower R-Buff. 

In addition to the performance statistics of Table 3, we also compute the buffering probabilities and buffering 
times for a partially ordered service. For this, Table 4 defines four target values. The investigation of buffering 
probabilities and times is done for three reasons. First of all, we need to know Buf,,b and Buf, in order to 
compute Tend, and R-Buff. Secondly, the analysis of buffering characteristics helps us better understand the 
overall analytic model. For example, we introduce some approximations to the computations of Tend, and 
R-Buff. These approximations are easier to understand when explained through buffering probabilities. Finally, 
for packets a and b such that a -+ b in PO, we investigate the negative effects of packet u’s loss on packet b 

through the target values pBuf,,, and Bufa,b. 
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Important performance statistics 

Throughput (A) 

End-to-end Packet Delay ( Teda ) 

Buffers Used at Receiver (RSuf) 

Average number of packets delivered to User Receiver per unit time 

Expected end-to-end delay for packet a 

Average number of packets buffered at POC Receiver waiting to be delivered to User Receiver 

Table 4 
Buffering probabilities and times 

PBuL,,, P(packet a arrives after packet b) if a 4 6; 0 otherwise 

5u&.ii 

P5&, 

Buti, 

E(time that packet b is buffered waiting for a to arrive at POC Receiver) if a < h; (Note: if there is no constraint (t + h, 
then 5ufn,b = 0) 

P(packet a is buffered at POC Receiver) 

E(time that packet a is buffered at POC Receiver) 

I Partial Order: 

L*=adebc 

Disg,, = 3 I 

Fig. 3. Dis&,b values for two different linear extensions of a partial order. 

Let Dist,,b( L) be the distance between packets a and b in the linear extension L defined as “seq( b) -seq( a)” 
where seq( x) returns the assigned sequence number for packet x in L. Notice that Dist,,b values can be different 
for different linear extensions of a PO. As an example, consider the PO in Fig. 3 and two of its linear extensions 
L1 and L2. The distance between packets a and b for these two linear extensions are 1 and 3, respectively. In 
our computations, we use the Dist,,b values of the dependent pairs (i.e., a 4 b in PO) to express the LE and 
PO information in the target values. 

In our analysis, we first present the computations of buffering probabilities and times in Section 3.3, We then 
introduce the investigation of Table 3’s performance statistics (i.e., throughput, end-to-end packet delay and 
expected buffers used at receiver) in Section 3.4. We study the effects of using a different LE as the sender’s 
transmission order on system performance in Section 3.5. 

3.3. Analysis of bufSering probabilities and times 

This section presents the investigations of buffering probabilities and times for a partially ordered service. 
This analysis proceeds by first computing these target values for a dependent pair of packets (i.e., ~Buf,,~ and 
Bufo,b). We then expand our computations to general buffering probabilities and times (i.e., pBuf, and Buf,) 
for any given packet. 

3.3.1. Buffering probability and time between dependent pairs: pBuf,,b and Buf,,b 
In a partially ordered service, there are packets whose delivery depends on other packets having been 

delivered. For example, for packets a and b such that a + b in PO, packet b cannot be delivered to User 
Receiver unless packet a has already been delivered. This is the requirement needed to assure that transport 
protocol provides the application’s desired partially ordered service. Hence, if b is received before a, then b 
should be buffered at POC Receiver until after a’s arrival and delivery. In this section, we study the buffering 
effects on b of a’s loss when a 4 b in PO. 

pBuf,,b is defined as the probability of having to buffer b due to loss of a. Let pSB,,, be the probability that all 
transmissions of packet a (i.e., original transmission and any retransmissions) preceding the first transmission 
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Fig. 4. Effects of D&b on (A) pBuf,,, and (B) Bufn,b when p = q = 0.1, Bufs = 3 and tpck = 1 

of packet b fail. Then we can compute pBuf,,b by using PSB,,~ as follows:’ 

1 
PBufavb - 1 + p - - * PSB,,, 

Similarly, Buf,,b, the expected time that packet b is buffered waiting for packet a to arrive, can be computed as 
follows: 

Buf,,b =PsB,.b * 
( 1 - p) * Uhf, - S&b) * tpack + P * tout 

1 -p2 

=PBufa,, * 
( 1 - P) * (Buf, - s&b) * tpack + P * tout 

1-P 
(2) 

where ,%a,& is the expected number of slots between u’s failure just before b’s first transmission, and b’s first 
transmission (see Appendix A.3 for the computational details of Buf,,b and s&b). 

Figs. 4(A) and 4(B) illustrate “pBuf,,b and Buf,,b vs D&b” for the system configuration where p = q = 0.1, 
Bufs = 3, and tp& = 1. Note that tpack = 1 represents the normalized case where it takes one unit time to 
transmit a packet. These graphs show that both target values decrease with increasing Dist,,b values. Thus, for 
any two packets a and b where a 4 b in PO, the negative effects of a’s loss on b decrease as the separation of 
b from a in the transmission order of the packets (i.e., Dist,,b) increases. It is noteworthy that at large Dist,,b 
values (e.g., Dist,,b 2 5), the buffering of b due to the loss of a is almost totally eliminated. 

This is an encouraging result since by putting some distance between the transmission orders of dependent 
packets, POC Sender can significantly reduce buffering probabilities and times in the system. That is, by 
wisely deciding on the packet sending order, POC Sender can improve the overall system performance. After 
computing all target values, we will further discuss the importance of sending transmission order in Section 
3.5. 

3.3.2. Buffering probability for a packet: pBuf, 
pBuf, is the overall buffering probability for packet a. Note that as the buffering probabilities in a system 

decrease, buffering times also decrease. Since packets are buffered for shorter times5 end-to-end packet delays 
and buffer utilization at the receiver should tend to be smaller. Thus, overall system performance should improve 
as pBuf, decreases. In this section, we investigate the conditions for this target value to decrease. 

Notice that packet a will be buffered if and only if it overtakes (i.e., arrives before) a packet b and b -+ a 
in PO. Then: 

’ Computational details for PSB,,~ and pBufn,b can be found in Appendix A.1 and A.2, respectively. 
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pBuf, = P U a overtakes b 
Vb-a > 

= 
c 

P( a overtakes b) - c p(h a overtakes bk 
Vb-kl V{bl ,b2} +I k=l 

) 

+ c P(haovertakes bk) -.. 
V{bl,b2,b3)+a k=l 

a overtakes bk 
> 

=pSBb,,,,,,bm,o * 

where PsBb, . . . ..bnt.a is the probability that all transmissions (original plus retransmissions) of packets bl through 
bm preceding the first transmission of packet a fail.8 Appendix A presents an exact computation for pSB,,(,. 
We only have an approximate expression for PSBbl,...,,m,a when m 3 2 in [ 81. Thus, besides being complicated, 
the buffering probability for packet a does not have an exact expression. 

In general, we can simplify (3) by using a different approximation. The terms P(nk, a overtakes bk) 
decrease with decreasing Bufs and p. Therefore, we do not have to compute all of the terms in expression (3) 
under low loss rates and sender buffer sizes. Under such situations, pBuf, can be approximated as: 

pBuf, rv c P( a overtakes b) = c pBuf,,, (5) 
Vb+a Vb4o 

Intuitively, we can explain this approximation as follows: when the loss rate is low, it is unlikely that packet 
a would overtake two or more preceding packets. Hence, when p is small, the buffering probability for 
packet a can be approximated by expression (5) since pBuf, N ‘j-&b<o P( a overtakes b) = ,&b+,pBufb a. 
Similarly, if Bufs is small, then fewer number of packets b such that b 4 a have a chance of failing u&l 
the first transmission of packet a. Thus, packet a has a smaller chance of overtaking two or more preceding 
packets. Therefore, expression (5) will be a good approximation to buffering probabilities when Bufs or p is 
small. 9 It is noteworthy that when Bufs = 2, pBuf, will be exactly equal to expression (5) since all terms 

N-L a overtakes bk) = 0 for m > Buf,. 

Expression (5) shows that as the number of packets b such that b 4 a decreases, or Distb,, values increase, lo 
pBuf, will decrease. In general, if the density of PO is small ” (i.e., relatively few ordering constraints), there 
will be a smaller number of packets b such that b -+ a. Additionally, DiStb,a values between dependent packets 
can in general be made larger by POC Sender’s choice of transmission order in the case of low density POs. 
Combining these two observations, we can say that if PO has low density, then the buffering probabilities in 
the system will be lower. 

Fig. 5 introduces three partial orders with densities 0.4, 0.6 and 1.0, respectively. Throughout this paper, 
we use these three partial orders in periodic form while comparing the performance of different services (i.e., 
partially ordered service with different densities, ordered service) with each other. A periodic PO is defined as 
a partial order repeating itself some number of times. Periodic POs can be represented as P @ . . . @ P where 

R See [ 81 for approximate computations of PSB~~,,.,,~,,,~ and P( nk, a arrives before bk). 

9 We will approximate the computations of Buf,, T,d, and R-Buff under the same conditions. 
‘” pBu& decreases with increasing &St& see fig. 4(A). 
’ 1 The density of a partial order is a measurement defined as follows [ 71. Let D represent the cardinality of the set of all ordered pairs (a. b) 

such that u + b in PO. The maximum value for D is N( N - 1) /2, therefore the density, d, is defined by the ratio d = 2D/ ( N( N - I ) ). 

For a chain, d=l; for an antichain, d=O. 
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1. Partial order with 
Density=0.4 

b-G-4 

2. Partial order with 3. Partial order with 
Density=0.6 Density=1 .O 

b-&-&d 

9 

Fig. 5. Partial orders with different densities 

~-i~~ 

Base Densities 11 Improvements 1 

Fig, 6. Average buffering probabilities (i.e., xfl with three different POs when Bufs = S and tpck = 1. 

P is the base partial order repeatedly concatenated to itself. I2 The base density of a periodic PO is defined 
as the density of just one period. Notice that for a chain PO, the base density (or the density of any number 
of periods) will be equal to 1. Thus, the third PO in Fig. 5 represents an ordered service, while the other two 
represent partially ordered services with periodic POs having base densities 0.4 and 0.6. For these three POs, 
LE = abcde is used as transmission order. 

Let pBuf be the average of buffering probabilities defined as pBuf = (xi, p&&)/N, where N is the total 

number of packets. Fig. 6(A) illustrates pBuf values for the three partial orders shown in Fig. 5. Similarly, 
the table in Fig. 6(B) introduces the corresponding values for pBuf. The rightmost two columns of the table 
give the percentage improvements in buffering probabilities by using either the 0.4 or the 0.6 base density PO 
instead of the chain (i.e., the 1 .O density). As an example, at 0.1 loss level (i.e., p = q = 0. l), Bufs = 5 and 

t,mck = 1, the average of buffering probabilities for the 0.4 base density PO is 0.22 and this is 3 1.7% smaller 
than that of the chain. 

Fig. 6 clearly shows that as the density of PO decreases, buffering probabilities in the system decrease. This 
figure also shows that the improvements in pBuf increase with increasing loss rate. For example, while the 
absolute l3 and the percentage gains by the 0.4 base density PO are 0.16 and 32.7%, respectively, at 0.2 loss 
level, they increase to 0.25 and 36.3% at 0.4 loss level. It is noteworthy that the absolute gains by partially 
ordered services are negligible at small loss rates (e.g., p, q < 0.05). This is because buffering probabilities by 
ordered service are already low and there is not much to improve by using partially ordered services. 

In general, we can conclude that a partially ordered service provides important buffering probability gains 
over an ordered service when the density of PO is low and the loss rate is high. 

I? “@” is the linear sum or concatenation operator for POs defined [ 51 as x 4 y in P CB Q if and only if x, y E P and I < y in P. or 
x, JJ E Q and .K + .v in Q, or x E P and y E Q. 
” Absolute pBufgain simply refers to the difference between the pBufvalues of a partially ordered service and those of an ordered service. 
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I 
3 
cq 

A. 

I II Base Densities II Immovements ] 
II over Chain 

p = 9 11 0.4 [ 0.6 1 1.0 11 0.4 1 0.6 

Fig. 7. Average buffering times (i.e., Buf) with three different POs when Bufs = 5 and rpld = 1 

3.3.3. Expected bufering time for a packet: Buf, 
This section investigates the buffering times characteristics of partially ordered services. Buf, is the expected 

time that packet a spends at the buffers of POC Receiver. In general, lower buffering times achieve desirable 
lower delay and buffer utilization. 

We already discussed during the computation of pBuf, that when Bufs or p is small, it is unlikely that two 
or more packets will be overtaken by a later packet. Using this fact, we approximate Buf, as follows: 

Buf, 21 1 E( time that a waits for b) = c Bufb,a. (6) 
Vb+a Vb+ 

Since with low density POs, the number of packets b such that b + a will be smaller, and Distb,, values 
between dependent pairs can be made larger, I4 based on expression (6), we can say that buffering times 
decrease with decreasing densities of POs. This can easily be seen in Fig. 7 that illustrates the average of 
buffering times (i.e., Buf = (Cz, Bu&)/lN) for the three POs in Fig. 5. Fig. 7 also shows that as the loss rate 
increases, while the percentage gains change only slightly, the absolute gains increase. 

Based on the results of Section 3.3, we can conclude that for applications that do not need an ordered service, 
by using partially ordered service, buffering probabilities and times in the system can significantly be reduced 
especially at high loss rates. 

3.4. Analysis of performance statistics 

The main objective of this analytic study is to investigate the throughput, delay and buffer utilization 
characteristics of partially ordered transport services. In general, our analysis proceeds as follows: 
( 1) We compute A, throughput, using Little’s theorem. 
(2) The formula for R-Buff, expected buffers used at receiver, is derived by using buffering times and Little’s 

theorem. 
(3) Tend,, end-to-end delay for packet a, is computed by using the expression for buffering times. 

3.4.1. Throughput: A 
With the assumptions 2, 3, 4, 5, 6, and 8 of Table 2, the number of packets at POC Sender is always 

Buf,. Let P&,,,, be the expected time that a packet spends at the buffers of POC Sender. By Little’s theorem: 

I4 Bufb,n decreases with increasing D&be; see Fig. 4(B). 
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A. 

Base Densities 11 Improvements 1 
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Fig. 8. Expected buffers used at receiver (i.e., R-Bum with three different POs when Bufs = 5 and tpck = I 

Bufs = A * P&,,,,. P&i,,,, can be computed as “P&T,,,~ = Cz i * to,* * psucc * ( 1 - psucc)i-’ = tout/psuccO. Thus, 

since Bufs = tour/tpack by assumption 6, throughput is: 

/&!E 
tpack 

packets/unit time. (7) 

Expression (7) shows the interesting result that throughput does not depend on the order requirements of 
applications (i.e., PO). Notice that we obtain this result under the assumptions of infinite buffers at receiver 
(i.e., BufR = co) and constant network layer delays. Thus, based on expression (7), we can conclude that a 
partially ordered service does not provide a throughput improvement over an ordered service when BufR = cc 
and network layer delay is constant. 

Would this analytic result be valid if we relax these two assumptions? The simulation results from [ 81 show 
that partially ordered services provide a throughput improvement only when POC Sender has more buffers than 
POC Receiver (i.e., Bufs > BufR). Thus, even though our analytic result is derived under constant network 
layer delays and infinite buffers at receiver, it also holds for variable network layer delays and for finite BufR 
such that BufR 2 Buf,. 

Since most transport layer protocols tend to use sender and receiver buffer sizes of roughly equal size, for 
most practical purposes, we can conclude that a partially ordered service provides no throughput improvement 
over an ordered service. Thus, our analytic result explains the relationship between throughput and order 
requirements of applications for most practical cases. 

3.4.2. Buffers used at Receiver: R-Buff 
In general, a packet spends Bu f = (cz, BuJ) /N time on average at POC Receiver. Using Little’s theorem, 

RBu#, the expected number of packets buffered at POC Receiver waiting to be delivered to User Receiver, can 
be computed as: 

R-Buff = A * Bu f packets (8) 

Fig. 8 illustrates R-Buff values for the three POs in Fig. 5. It shows that buffer utilization is lower with lower 
densities of POs. As an example, at 0.1 loss level, R-Buff with 0.4 and 0.6 base density POs are respectively 
36.3% and 24.9% smaller than that of ordered service (i.e., 1.0 density). Fig. 8 also shows that while there 
are significant percentage improvements in R-Buff at all loss levels, the absolute gains are negligible at small 
loss rates (e.g., p, q < 0.1) . 
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B 

Base Densities Improvements 
over Chain 

Fig. 9. Relationship between Tpnd and loss rates when BufS = 5, rPck = I and thlov = 2.5 

3.4.3. End-to-end packet delay: T,,,d, 
T 4, is the expected time for packet a to reach to User Receiver once it is given to POC Sender for 

transmission. In general, there are two parts of this target value: ( 1) the expected time to reach to POC Receiver, 
and (2) the expected buffering time (i.e, Buf,). We computed (2) in Section 3.3.3. By just computing the first 
term, we can derive the expression for T,,,&. 

E( time to reach to POC Receiver) = t&lay + c( i - 1) * tour * ( 1 - p) * pie1 = tdeloy + -.tf- * tout. 
i=l 1-P 

Hence, Tenda is: 

T end,, = tdelay + 
P 

- * tout 
1-P 

+ Buf,. (9) 

- 
Fig. 9 illustrates the average of packet delays (i.e., Tend = (c:, Tend,)/N) for the three POs in Fig. 5. For 

example, for the PO with 0.6 base density, when Bufs = 5, $a& = 1, t&&y = 2.5 and p = q = 0.4, the average 
end-to-end packet delay is 8.86 time units. This is 10.7% better than the packet delay achieved for a chain (i.e., - 
1 .O density). Fig. 9 shows that, at small loss rates (e.g., p, q < 0.05)) T end for all POs are almost identical. - 
On the other hand, as the loss rate increases, both percentage and absolute improvements in Tend increase. Such 
improvements of partially ordered services are particularly higher with lower density POs. 

It is noteworthy that partially ordered services provide smaller improvements in delay than those in other 
target values such as buffer utilization, and buffering probabilities and times. Intuitively, this is because the 
dominant factors in end-to-end packet delay such as network layer delays and retransmissions due to packet 
losses cannot be eliminated by reducing the delivery precedence constraints among packets. This intuition can 
easily be verified by expression (9). Consider the two parts of this expression: ( 1) expected time to reach to 
POC Sender and (2) Buf,. The first term “t&[qv + & * tour” represents the Tend0 components due to network 
layer delays and retransmissions. This term is independent of the PO being used; it cannot be reduced by using 
a partially ordered service. Partially ordered service can improve delay only by reducing the buffering times 
(i.e., just one of the two important parts of delay expression). Therefore, the overall improvements in delay 
are not as significant as those of other target values. Nevertheless, there is still some improvement obtainable 
in Tend by partially ordered services. 

In general, Section 3.4 shows that for applications that can tolerate some reordering in the delivery of packets, 
use of partially ordered service instead of ordered one provides some delay and considerable buffer utilization 
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Fig. 10. Comparison of two LEs as transmission order when Bufs = 5, tplck = 1 and r~~Ov = 2.5. 

improvements in the system, particularly as the loss rate increases and the order requirements of the applications 
decrease. Analytic results also show that in terms of throughput, it does not make any difference which service 
(i.e., ordered, partially ordered, unordered) an application uses. 

3.5. Using a different LE as POC sender’s transmission order 

In a partially ordered service, POC Sender is permitted to transmit packets in any order that does not violate 
the partial order [ 31. That is, any valid LE of PO is permitted. Does the choice of which LE is used by 
POC Sender affect the expected performance? In this section, we will address this question by comparing the 
performance of different LEs of a PO. 

Consider the following two LEs of the first PO = (a 4 c 4 e) [I( b -+ d) in Fig. 5: LE1 = acebd and 
LE2 = abcde. Is either of these two LEs a better transmission order? From Section 3.3.1, we know that if the 
separations of the dependent packets in transmission order (i.e, Dist,,b values for all a -+ b) are increased, then 
buffering probabilities and times in the system are reduced. Thus, we can say that LE2 is better because in LE, , 
dependent packets ace and bd are transmitted in sequence whereas in LE2, they are separated. 

Which target values can be improved by using LE2 over MI? Since A is independent of PO being used, 
throughput will be unaffected by the choice of LE. On the other hand, all other target values (i.e., PBuf, Buf, - - 
Tend and RBufl will be improved by LE2. I5 This can easily be seen in Fig. 10 that compares the performance 
of LEI with that of LE2. This figure shows that at higher loss rates, buffering probabilities and times, buffer 
utilization and delay are improved by using LE;? over LE1. For example, when the loss rate equals 0.1, the --- - 
percentage improvements are 4.30%, 12.27%, 2.51% and 12.27% in pBuf, Buf, Tend and R-Buff, respectively. 

I5 See expressions (5). (6), (8) and (9) for pB& Buf,, R-Buff and Tcna,, respectively; all these target values decrease with increasing 
Distb.o values for h 4 n. 



688 R. Marasli et al. /Computer Networks and ISDN Systems 29 (1997) 675499 

Fig. 10 clearly shows that the choice of which LE is used by POC Sender affects the overall system performance. 
Thus, it is important to use a good linear extension as transmission order in a partially ordered service. 

Reference [ 91 provides a more in-depth study of the problem of determining the best transmission order for a 
given partially ordered service. In [ 91, a new metric (p&.$-metric) for quantifying a linear extension’s goodness 
is defined based on the average of buffering probabilities (i.e., @@metric= ( Ca+b in Po(@~f,,b))/N). This 
p&&metric approximates the average of buffering probabilities when the linear extension LE of PO is used as 
transmission order. Because of this characteristic, p&$-metric can be used to discover the LE (or the set of 
LEs) of a PO that achieves the lowest buffering probabilities in the system. In deciding between two linear 
extensions of a PO, if POC Sender chooses the one with smaller @f-metric value, then that LE is expected 
to result in smaller buffering probabilities and other performance advantages. 

Consistent with analytic results, the simulation results of [ 9 ] show that by choosing better LEs over subop- 
timal ones, we obtain some delay and important buffer utilization improvements, but, in general, no throughput 
improvement. Results of [9] also show that p&f-metric (the metric derived directly from analytic model) is 
effective in determining the good LEs of a PO even under variable network layer delays and finite receiver 
buffers. 

4. Verification of analytic model 

Section 3 investigates the buffering, delay, buffer utilization and throughput characteristics of partially ordered 
transport services by computing the set of target values defined at Tables 3 and 4. In this section, we will 
verify the analytic model by comparing the results against those of simulation model. More specifically, 
the computations of the following target values will be verified: buffering probabilities and times between 
dependent pairs (i.e., pBuf& and Bufa,b for u -i b), buffering probabilities and times for a packet (i.e., pBuf, 
and Buf,), throughput (i.e., A), expected buffers used at receiver (i.e., RBu$) and end-to-end packet delay 
(i.e., T,,d, 1. 

For simulation study of partially ordered transport services, we built an OPNET-based simulation model at 
the University of Delaware’s Protocol Engineering Lab. OPNET (OPtimize Network Engineering Tools) is a 
comprehensive engineering system capable of simulating large communication networks with detailed protocol 
modeling and performance analysis [ 21. 

For the verification process of analytic model, we run three different sets of experiments each of which 
testing a different hypothesis of the analytic model. It is important to state that these four hypotheses were all 
developed based only on the analytic model and before any simulation were run. The hypotheses are: 

Hypothesis 1. Analytic model gives the exact expressions for pBuf,,,, Buf,,b and A. 

Hypothesis 2. Analytic model results in the actual values for pBuf,, Buf,, Tend. and R-Buff when Bufs = 2. 

Hypothesis 3. As Bufs increases, analytic model overestimates the values for pBuf,, Buf,, T,,h and R-Bu. 

Hypothesis 4. At low loss rates, the analytic model better approximates the values for pBuf,, Buf,, R-Buff and 
T,,d” even at larger Bufs VdUeS. 

The analytic model gives the exact computational results for the target values pBufa,b, Bufa,b and h regardless 
of buffer sizes and loss rates. Thus, under the assumptions given at Table 2, we have the exact expressions for 
these target values. In all experiments performed, we show that the simulation and analytic results are closely 
matched for these three target values (Hypothesis 1) . 
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We will explain Hypotheses 2-4 only for buffering probabilities (i.e., pBuf,). But one can easily extend 
these explanations for buffering times (i.e., Buf,). Since Tend, and RBnfi are derived using Buf,, the same 
arguments will be valid for those two target values as well. 

The buffering probability for packet a is approximated in expression (5). Let Error be the following: 

Error = c P(a overtakes 61,62) - c P(u overtakes bl,b2,b3) +... 
V{bl,b2}<a V{bl,b2,b3}+a 

= P (a overtakes two or more dependent packets) (10) 

Thus, pBuf, - Error is the exact computation where Error represents the error value in the approximated 
computation. 

When Bufs = 2, P( u overtakes more than one preceding packet) = 0. Thus, under this condition, Error = 0 
and we have the exact computation for the target values pBuf,, Buf,, Ten,& and RBufl In Experiment 1, we 
show that when Bufs = 2, the simulation and analytic results for these target values are closely matched 
(Hypothesis 2). 

As Bufs increases, we expect to see that packet a overtakes more preceding packets. Thus, with increas- 
ing Bufs, Error should also increase. Notice that as Error increases, the analytic model starts increasingly 
overestimating the approximated values. This effect is shown in Experiment 2 (Hypothesis 3). 

Finally, at small loss rates, Error = P( a overtakes more than one dependent packets) will be low even when 
Bufs is large. Intuitively, this is because, at small loss rates, it is unlikely that packet a will overtake two or 
more preceding packets. Thus, at small loss rates, the analytic model should provide closer approximations for 
the target values pBuf,, Buf,, Tend. and R-Buff. This is shown in Experiment 3 (Hypothesis 4). 

The analytic model computes the target values under certain assumptions (e.g., constant network layer 
delays, infinite buffers at POC Receiver, etc.; see Table 2 for the full set of assumptions). The parameters of 
the simulation model are tuned so that we have a comparable system. That is, the results of these simulation 
experiments can be compared to analytic results because they are both derived from the same kind of system. 

In the simulation study, each experiment is repeated three times with 30000 packets and the averages of the 
observed values from these three simulation runs are computed. The worst case for the analytic model to estimate 
the values for pBuf,, Buf,, Tend. and R-BufSoccurs when the PO under consideration has the most dependencies 
possible. This is because for such partial orders, there will be a higher chance that the packets overtaken by a 
will have a dependency relation with a, and thus, Error = P(u overtakes two or more dependent packets) will 
be higher. Additionally, if the partial order has the most dependencies possible, then we will have the maximal 
number of nonzero terms for p&f,,, and Buf,,b to compare with simulation results. I6 Hence, to best verify the 
analytic model, in all experiments, we use a chain as PO. 

Sections 4.1, 4.2, and 4.3 present the results of the experiments through graphs. The graphs compare the 
average values from the three simulation runs with the analytic values for all target values. In the graphs, the 
following conventions are used: the analytic results are plotted as lines without explicitly marking the computed 
points whereas the simulation results are shown only as computed points. Additionally, the simulation and 
analytic results in the graphs are labeled as “S’ and “A”, respectively. 

4.1. Experiment I 

In these experiments, we simulated a sender buffer size (Buf,) of 2 in order to test Hypothesis 2. The results 
of these experiments are also checked for Hypothesis 1. These experiments consist of three simulations runs for 
the loss rates of 0.01,0.05,0.1, 0.2, 0.3,0.4,0.5,0.6, and 0.8. The corresponding analytic values are computed 
for p = q values of 0.01, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.4, 0.45, 0.5, 0.6, 0.7, 0.8, 0.9, and 0.99. The 

16pBuf,,b and BIJ~~,~ are zero if there is no constraint a 4 b in PO; see Section 3.3.1. 
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Loss Rate (p = q) 

Loss Rate (p = q) C. 

Fig. I 1. Graphs for (A) A, (B) pBuf,,, and (C) Buf,,b (Experiment 1) 

Loss Rate (p = q) 

Loss Rate (p = q) 

Loss Rate (p = 4) 

Fig. 12. Graphs for (A) pBuf,, (B) Buf,, (C) R-Buff and (D) Tend, (Experiment 1) 
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Fig. 13. Graphs for (A) A, (B) p&f,., and (0 Bufo.b (Experiment 2). 

analytic model computations are done for more points (i.e., loss rates) in order to have smooth curves in the 
graphs. 

Figs. 1 I (A)-(C) illustrate the graphs for A, pBuf& and Bufasb. As the graphs show, the analytic and 
simulation values are closely matched in these experiments. In general, all results from two models are within 
1% of each other. Thus, the first set of experiments supports the correctness of Hypothesis 1. 

The simulation and analytic values for pBuf,, Buf,, RBufS and Tend0 are given in Figs. 12(A)-(D). Since 
Bufs = 2, the analytic and simulation results strongly support each other for these target values. The values 
from two models are generally within 1% of each other. Thus, as predicted by Hypothesis 2, the analytic and 
simulation results are essentially identical when Bufs = 2. 

4.2. Experiment 2 

In the first set of experiments, we set Bufs = 2, vary the loss rate, and test Hypothesis I and 2. In the second 
set of experiments, we set the loss rate= 0. I, vary Buf,, and test Hypothesis 1 and 3. We run three simulations 
for Bufs values of 2, 3, 4, 5, 6, and 8. The corresponding analytic values are computed for Bufs values of 2, 3, 
4, 5, 6, 7, 8, and 9. 

Figs. 13 (A)-(C) introduce the graphs for A, pBuf,,, and Buf,,b. As in the first set of experiments, the 
analytic and simulation values are close to each other in these experiments as well. Thus, the A, pBuf,., and 
Bu& results of these experiments are as stated in Hypothesis 1. 

The graphs for pBuf,, Buf,, R-Buff and T,,,da are given in Figs. 14(A)-(D). These graphs clearly show 
that as Bufs increases, the analytic model increasingly overestimates these four target values as expected. For 
example, while at Bufs = 3, the analytic model value for pBuf, is about 4.6% larger than the corresponding 
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Fig. 14. Graphs for (A) pBuS,, (B) Buf,, (C) R-Buff and (D) T,nd, (Experiment 2). 

simulation value, at Bufs = 5, it is almost 15.7% larger. Thus, Hypothesis 3 successfully explains the results of 
these experiments. 

4.3. Experiment 3 

The primary purpose of the third set of experiments is to test Hypothesis 4. Meanwhile, we also check the 
correctness of Hypothesis 1. In the experiments, we set Bufs to a value greater than 2, and vary the loss rate 
in order to test Hypothesis 4. In both the analytic and simulation models, Bufs is taken to be 6. The simulation 
experiments are run for the loss rates of 0.05, 0.1, and 0.3. The corresponding analytic values are computed 
for p = q values of 0.05, 0.1, 0.2, and 0.3. 

As stated in Hypothesis 1, Figs. 15(A)-(C) show that the analytic and simulation values for A, pBuf,,b and 
Buf,,b are closely matched. The results from two models are generally within 1% of each other. 

The graphs for pBuf,, Buf,, R-Buff and Tend0 are illustrated in Figs. 16(A)-(D). These graphs show that 
the results from two models are closer to each other at lower loss rates. Thus, as predicted by Hypothesis 4, 
the analytic model better approximates these four target values at smaller loss rates. For example, while the 
analytic model overestimates Tend by about 10.9% at loss rate= 0.3, it is only 2.3% larger than the corresponding 
simulation value at loss rate= 0.01. 

In summary, Sections 4.1-4.3 present the results from three different sets of simulation experiments. These 
experiments support the four hypotheses derived from the analytic model before any simulation experiment 
were run. In general, the analytic and simulation results are within 1% of each other for the values that analytic 
model is expected to provide the exact results. Based on the results of Sections 4.1-4.3, we conclude that the 
analytic model provides 
e accurate results for A, pBuf, b and Buf, b under any loss rate and sender buffer size, 
l accurate results for pBuf,, L&fa, -8; and Ten& when Bufs = 2, 
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Fig. 15. Graphs for (A) A, (B) pBu&,, and (C) Bufa,b (Experiment 3). 
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Fig. 16. Graphs for (A) pBuf,, (B) Euf,, (C) R-Buff and (W Tend, (Expefiment 3) 
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l close results for pBuf,, Buf,, R-Buff, and Tend0 when sender buffer size or the loss rate is small, and 
l accurate “shape of curve” for pBuf,, Buf,, R-Buff, and Tend, even at high loss rates and large Bufs values. 
Thus, based on these results, we conclude that the simulation experiments provide strong evidence to the 
correctness of the analytic model. 

5. Summary of main results 

This paper presents an analytic model for investigating the throughput, delay and buffer utilization charac- 
teristics of partially ordered transport services. Through this model, we study the effects of packet and ack 
losses as well as various levels of applications’ order requirements on the performance of different services 
(i.e., ordered, partially ordered, and unordered). The analytic model is verified by comparing the results against 
those of an OPNET simulation model. 

The analytic study shows that in terms of throughput, it does not make any difference which service (i.e., 
ordered, partially ordered) an application uses. On the other hand, for applications that can tolerate some 
reordering in the delivery of objects, use of ordered service instead of partially ordered one results in important 
buffer utilization and delay increases, particularly as the underlying network’s loss rate increases and the 
applications’ order requirements decrease. Unordered service, however, is unable to provide the minimal order 
guarantees of applications. Thus, in lossy environments, partially ordered service is necessary to provide the 
order requirements of applications, and at the same time, to prevent the delay and buffer utilization costs of 
ordered service. 

In a partially ordered service, the sender is permitted to transmit packets in any order that does not violate 
the partial order. Analytic results show that by judicious choice of transmission order, the system performance 
can further be improved. Thus, it is important to use a good linear extension as transmission order in a partially 
ordered service. 

Appendix A. Computational details 

In this appendix, we present the computational details of pSB,,,, pBuf, b and Buf,,b. pSB,,, is the probability 
that all transmissions of packet a prior to packet b’s first transmission fail. This probability is the cornerstone 
of our computations. Obviously, only if packet a keeps failing until packet b’s first transmission, is there a 
possibility that packet b will overtake packet a, resulting in packet b’s buffering at POC Receiver. pSB, h is 
used to derive the expressions for pBuf,*, and Bufa,b, which in turn are used in the approximate computations 
of pB& and Buf,. The expressions for R-Buff and Tend0 are derived by using Buf,. Because of this, we will 
present a detailed discussion on pSB,,, in the next section. 

Let s,, be the time that packet a’s irh transmission starts at POC Sender. s,, is the time of a’s original 
transmission, so2 is the time of the first retransmission, and so on. Additionally, let r, be the time that packet 
a is received at POC Receiver for the first time. Throughout this appendix, we will use these two variables in 
our computations. 

A. 1. Probability that one packet keeps failing until the first transmission of another packet: pSB,%, 

Fig. A.1 shows a scenario where packet a’s original transmission and all of its retransmissions occurring 
before packet b’s first transmission fail. In this figure, the total number of times that a fails before b’s first 
transmission is t + 1. 

Note that for any original packet transmission, there must be a corresponding successful packet-ack trans- 
mission t,,,, earlier in time in order to free a buffer space at POC Sender and to allow for the corresponding 
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packet’s first transmission. For example, the successful packet-ack transmission allowing for packet a’s first 
transmission occurs at point X in Fig. A. I. 

In this example case, sb, - so, = t * tour + i * tpack = (t * Bufs + i) * rp,&. Thus, there are a total of t * Bufs + i 
transmissions during time [s =, , Sb, ] or equivalently during time [s,, - tour + tpack, sb, - t,,[ + tp&] If a fails 
until the first transmission of 6, then the following conditions are satisfied for the t * Bufs + i transmissions 
during time [so, - tout + tpack, sb, - tout + tpockl : 

( 1) a fails t times. Thus, out of t * Bufs + i transmissions, t of them are a’s unsuccessful packet transmissions; 
leaving t * ( Bufs - 1) + i transmissions for other packets. 

(2) Out of remaining t * ( Bufs - 1) + i transmissions, there must be only Dist,,b successful packet-ack 
transmissions allowing for the packets between a and b (a total of Dist,.b of them) to have their first 
transmissions in time [ sO, + tpa&, Sb, + tp&] . 

(3) A successful packet-ack transmission occurs precisely at time Sb, - tour (point Y in Fig. A.1 ), thereby 
allowing POC Sender to transmit packet b at time sb,. This is the last success. 

(4) The remaining DiSt,+b - 1 successes must have occurred in any of the previous t * ( Bufs - 1) + i - I 
transmissions. 

Additionally, a must fail one more time during [ sb, - tout + tpock, sb, ] just before b’s first transmission as shown 
in Fig. A. 1. In this example scenario, there are t timeout periods between the first transmissions of packets a 
and b, and b’s first transmission takes place at the (i + 1)th slot of the last timeout period (i.e., (t + 1)th 
timeout period after a’s first transmission). We have the following overall probability for this situation: 

P( a fails until Sb, and there are t timeout periods in [s,, , sb, ] 

and b’s first transmission takes place at (i + 1) th slot of last timeout period) 

= P( u fails t times in [s,, - tout + tpa&, sb, - to,r + tpack] and there is a success at time sb, - t,,, 

and there are Dist,,b - 1 successes from remaining t * (Buf, - 1) + i - 1 transmissions 

and a fails one more time in time [ sb, - tout + rp&, sb, ] ) 

= Pf * (Pm) * (( t*(Buf,-l)+i-1 
Dist,,b - 1 > 

(Pm,> Di%b - 1 * ( 1 - psucc ) r*(Bufs-l)+i-Dist,,b 
*P 
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=P 
r+1 * 

(( 
t*(Buf,-1)+i-I 

Dist,,b - 1 > 
(Psucc)Di%b * (1 _ psucc)~*(~~f,-l)+i-Di~~~,b 

> 
. 

Since l<iGBufS-1: 

P (a fails until Sb, and there are t timeout periods in [so,, sb, ] ) 

t*(BufS- 1) Si- 1 
DiSta,b - 1 

(Psucc)D&b * (1 _Psucc)f*(Bufs-l)+i-Dist.,l, 

(A.11 

(A.21 

Based on these observations, psB,,b can be computed as follows: 

psB,,b = P (U fdS Until sb, ) 
00 

= 
c P (there are t timeout periods in [s,, , Sb, ] and a fails until Sb, ) 

f= [( Distn.b- 1) /Euf,- 1 J 

=pl(Dis~.,b-l)l~~f,-lj+l 

BUf,-1 

* 
c 

i=remainder( (Disf.~,- I ) /( Buf,- 1)) +I ( 

[(DiSt,,b - l)/(BufS - l>J * (Buf, - 1) + i - 1 
DiSt,,b - 1 > 

* (Psucc) Distosb * ( 1 - Pm) 
l(Dist,,b-l)/(Euf,-l)j*(Buf,-l)+i-Dist~,b 

> 

M 

+ 
c P r+1 t*(Buf,- 1) +i- 1 

Dist,,b - 1 > 

* ((psucc)Di%b * (1 _ Psucc)f*(Buf~-l)+i-Dist.,b) 
(A.3) 

Expression (A.3) thus far has no known closed-form solution; it reduces to expression (A.4) when Bufs = 2. 

PSB,*~ =pDista.b * (psucc)Dista.b + c 

t=Di.$,,b 

(Distayb _ Jpr+1 * (PsucYsta.b * (1 - PsuccY+l-DiSf~.b 

= 
p * Psucc 

DiSf,,,b 

1 - p + P * Psucc 
(‘4.4) 

A.2 Computation of pBuf,,, 

pBuf,,b is the probability that packet a is received after packet b, thus resulting in buffering packet b. 
This value will be computed when b’s delivery depends on a’s previous delivery, i.e., a -i b. (If there is no 
dependency relation between a and b, this value is zero by definition.) 

pBUf,,b = P ( ra > rb) = psB,.b * P ( IO > rb 1 a fails until sbl ) 

The latter term in expression (AS) can be computed as follows: 

(A.5) 

P( r. > rb / a fails until sb, ) 
00 

= c ( 1 - p) * pi-’ * P(r, > rb 1 b’s packet transmission succeeds at jth attempt and a fails until Sb, ) 
j=I 
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co 
= c (I-p)*pj-‘* P(a’s packet transmission succeeds at ith attempt after sb, where i 3 j) 

;=I 7x3 = *( c 1 -p) *pj-’ * 
;=I ( 

?(I -p) *#-I) 
i=,j 

1 
=-----. 

i +p 

Substituting equation (A.6) into expression (AS) : 

1 
PB&,I, = P=a,b * - 

1 +P 

(A.6) 

(A.71 

A.3. ComPutation of hf,,,b 

The value Buf&, the time that packet b is buffered waiting for packet a to arrive, is computed for a -X b. 
This value is zero by definition when there is no dependency between a and b since in this case b never has 
to wait for a in the buffers of POC Receiver. 

B&,,b = -Q 0 - ra) 

=PSBa.b * E( lb - ra / a fails until 36, > 

F(, -p) *#-I 

j=l 

* E( rh - ra 1 a fails until Sb,and b’s packet transmission succeeds at jth attempt) 
> 

?(I -p) *pi-’ * 2 P( u’s packet transmission succeeds at ith attempt after sb, ) 
j=l i=j 

* ((j - i> * tout + ( Bufs - =a,b) * $ack) 
>> 

= PSB,,, * 

=PSB,,., * 

(1 -p) *pi-l * j?( 1 - p) * pi-’ * ((j - i) * buj f (Bufs - s&b) * $a&) 

i=,j 

(1 - P) * Uhf, - =a,b) * tpack + P * tout 

1 -p2 

= P&f,., * 
( 1 - P) * Wf, - =a,b) * tpack + P * tour 

1-P (A.8) 

where sLO,b is the expected number of slots between u’s failure just before b’s first transmission and b’s first 
transmission (in Fig. A.,, this is shown as “i slots”). We have studied the events leading to a’s failure until 
the first transmission of b in detail in Appendix A.1. Thus, by using these events, %.,,b can be computed as: 

SL,.b = 2 . L * P (a is transmitted at 1 st slot of timeout period and b is transmitted at ( i + 1) th slot of 
i=l 

the same timeout period ) a fails until Sb,) 
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= 
Euf,- 1 

c 

[(D&b - l)/(Buf, - 1,J * (Bufs - 1) + i - 1 

Dist,,b - 1 
*i 

i=remainder( (Disr,,r, - 1) / (Bufs - 1) ) + I 

Co 

+ 
c 

t*(Buf,- 1) fi- 1 

DiSta<b - 1 
*i 

1=l(Disr,,/,-l)/(Buf~-l)J+I i=l 

CA.9) 
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