
440 IEEUACM TRANSACTIONS ON NETWORKING. VOL. 2, NO. 5 . OCTOBER 1994

Partial-Order Transport Service for
Multimedia and Other Applications

Paul D. Amer, Christophe Chassot, Thomas J. Connolly, Student Member, ZEEE,
Michel Diaz, Senior Member, IEEE, and Phillip Conrad, Student Member, IEEE

Abstract- This paper investigates a partial-order connection
(POC) service/protocol. Unlike classic transport services that
deliver objects either in the exact order transmitted or according
to no particular order, POC provides a partial-order service; that
is, a service that requires some, but not all objects to be received
in the order transmitted. Two versions of POC are proposed:
reliable, which requires that all transmitted objects are eventually
delivered, and unreliable, which permits the service to lose a sub-
set of the objects. In the unreliable version, objects are more finely
categorized into one of three reliability classes depending on their
temporal value. Two metrics based on e , (P) , the number of lihear
extensions of partial-order P in the presence of i lost objects,
are proposed as complexity measures of different combinations
of partial order and reliability. Formulae for calculating e L (P)
are derived when P is series-parallel. A formal specification of a
POC protocol, written in Estelle, is presented and discussed. This
specification was designed and validated using formal description
tools and will provide a basis for future implementations.

I. INTRODUCTION AND MOTIVATION
URRENT applications that need to communicate objects C (i.e., images, files, sound bites) choose between classic

transport services that provide either an ordered service (e.g.,
TCP) or one that does not guarantee any ordering (e.g., UDP).
Many applications, however, such as multimedia only require
partial-order delivery; some objects being communicated must
amve in the order transmitted, some may arrive in any order.
By currently using an ordered service, these applications waste
both memory and bandwidth resources and at the same time
risk incurring greater delays.

Multimedia traffic often is characterized either by periodic,
synchronized parallel streams of continuous bit rate (CBR)
information (e.g., combined audio-video), or by structured
image streams (e.g., displays of multiple overlapping and
nonoverlapping windows). Currently these applications must

Manuscript received January 23, 1993; revised July 7, 1994; approved by
IEEUACM TRANSACTIONS ON NETWORKING Editor K. Sabnani? This work
supported by CNET under Grant 92 1B 178 as part of a CNET-CNRS
collaborative project on High-speed Multimedia Systems. P. D. Amer, T.
J. Connolly, and P. Conrad were supported in part by the NSF under Grant
NCR-9314056, the U S . Army CECOM, Ft. Monmouth, and the U.S. Army
Research Office under Contract DAAL03-91-G-0086, DAAL03-92-G-0070.

P. D. Amer, T. J. Connolly, and P. Conrad are with the Department of
Computer and Information Science, University of Delaware, Newark, DE
19716 USA (email: amer@cis.udel.edu).

C. Chassot and M. Diaz are with the Laboratoire d’Automatique et
d’ Analyse des Systemes, Centre National de la Recherche Scientifique (LAAS
du CNRS), Toulouse, France (email: diaz@droopy.laas.fr).

IEEE Log Number 9406 18 1.

use and pay for an ordered service even though they do not
need it. Because a partial-order service has greater flexibility in
delivering objects to a user, such a service will reduce delays
in object delivery, and require less memory and/or bandwidth
on the average than would an ordered one. This will be the
case when the underlying service is inherently unreliable as
in the Internet packet switched network. In today’s age of
megabyte objects, avoiding the need to buffer or retransmit
even one object can result in significant savings.

Two variations of a partial-order service are proposed:
reliable partial-order service (R-PO) which guarantees the
eventual delivery of all transmitted objects according to a de-
fined partial-order, and unreliable partial-order (U-PO) service
which makes a best effort to deliver all transmitted objects, but
tolerates a well defined level of lost objects. In addition to in-
troducing partial-order services/protocols, this article considers
quantifying, comparing and formally specifying each version.

Additionally, this article investigates metrics that charac-
terize (i.e., quantify) the work that must be performed to
provide a particular R-PO (U-PO) service, and how this metric
is computed for a given partial-order. Such a metric would
permit one to compare two or more R-POs (U-POs) thereby
distinguishing between different quality of service levels and
providing a clearer means, say, for charging for each service.

Also, a U-PO service allows a destination to presume
certain, but not all objects to be lost when their temporal
value has expired. This article considers: how one classifies
objects according to their varying temporal constraints; how
a destination dynamically decides when objects are lost; and
what are the effects of such a decision.

These issues are considered as follows. Section I1 introduces
and motivates R-PO and U-PO service in detail. Section I11
proposes two metrics based on a partial order’s set of linear
extensions for quantifying and comparing the complexity of
different R-PO and U-PO services. Formulae for calculating
these metrics are derived for the subset of partial orders that
are series-parallel, a form often appropriate for characterizing
multimedia applications. In Section IV and Appendix A, a
partial-order connection (POC) protocol for providing either
R-PO or U-PO service for any partial order is specified in
the IS0 formal description technique, Estelle. Also several
practical issues of concern in implementing POC in the future
are considered. Finally, Section V provides conclusions and
directions for future research.

10634692/94$04.00 0 1994 IEEE

AMER et al.: PARTIAL,-ORDER TRANSPORT SERVICE FOR MULTIMEDIA 441

Fig. 1. Anatomy and physiology instructor workstation instance (Example 1)

-
c

sound rcqucncr

Fig. 2. Analogous partial order (Example 1).

II. PARTIAL-ORDER SERVICE

Partial-order services are needed and can be employed as
soon as a complete ordering is not mandatory. When two
objects can be delivered to a transport service user in either
order, there is no need to use an ordered service that delays
delivery of the second one transmitted until the first arrives.
Four illustrating examples are presented.

Example I : Consider an Anatomy and Physiology Insmc-
tor system described as “a simple multimedia application
example based on the hypermedia paradigm and temporal
relation specification [22].” Here a workstation displays mul-
tiple windows of video, audio, text, image, and animated
image according to well defined synchronization and ordering
requirements. In one particular presentation, the user learns of
the human heart by combining an animated image and sound
track of a heart pumping in one window while simultaneously
providing general textual information (e.g., average heart rate)
in another window (see Fig. 1 taken from [15].)

Fig. 1 adapted from [22] illustrates the partial order that
models the heart presentation. Views 1 and 2 of the heart are
fixed images that change with time to provide a gradual rota-
tion or slow-motion animation. These images are represented
by objects 1-12 displayed in a sequence of six pairs. There

are two text objects and two single image objects shown in
the four windows on the right. These are single independent
objects (16-19). The full motion video and sound track are
represented here as single objects preceded by a null object
used for synchronization purposes (13- 15).

The six pairs of images of the slow motion animation have
an inherent order, but there is no order constraint on the
delivery within each pair. Similarly the arrival ordering of all
twelve images is independent on the ordering of the four single
objects. That is, the arrival of some objects is only partially
dependent on all of the others.

Note that a partial-order service focuses primarily on deliv-
ery order. The temporal value of objects is taken into consid-
eration when the service allows some level of permitted loss
(Section IV-B). It is assumed that synchronization concerns in
presenting the objects after delivery is a service provided on
top of the proposed partial-order service. Temporal ordering
for synchronized playback is considered, for example, in [3] ,
[161.

Example 2: Consider an application that must do a screen
refresh on a workstation screen/display containing multiple
windows. In refreshing the screen from a remote source,
objects (icons, still or video images) that overlap one another

442 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 2. NO. 5, OCTOBLR 1994

A-F\ Ordered Service

1-2-3- 4

NETWORK

n PartlallyOrderedSerVlce

NETWORK

3-4

NETWORK

I NETWORK

Fig. 3. Ordered versus partial ordered versus unordered service (Example 2).

Fig. 4. Television news broadcast for the hearing impaired (Example 3).

have a “series” relationship and should be delivered to the
display for refreshing from bottom to top for optimal redis-
play efficiency. However, objects that do not overlap have
a “parallel” relationship and may be refreshed in any order.
Therefore, the way in which the windows overlap induces a
partial order.

Consider the four cases in Fig. 3(a) sender wishes to refresh
a remote display that contains four active windows (objects)
named { 1 2 3 4) . Assume the windows are transmitted
in numerical order and the receiving application refreshes
windows as soon as the transport service delivers them. If the
windows are configured as in Fig. 3(a), an ordered service,
also referred to as a FIFO channel, is required. In this case,
only one ordering is permitted at the destination. If window
2 is received before window 1, the transport service cannot
deliver it or an incorrect image will be displayed.

At the other extreme, if the windows are configured as in
Fig. 3(d), an unordered service would suffice. Here any of 4!
= 24 delivery orderings would satisfy the application since the
four windows can be refreshed in any order. As notation, four
ordered objects are written 1;2;3;4 and unordered objects are
written using a parallel operator: 1 11 2 (1 3 I (4.

I ‘ I

Fig. 3(b) and (c) demonstrate two (of many) window config-
urations that call for a partial-order delivery service. In these
cases, two and six orderings, respectively, are permitted at the
destination.

Example 3: Sending a set of objects in a partial order need
not be a one time event as in the previous two examples.
In cases of periodic (i.e., cyclic) communication such as a
multimedia presentation with synchronized video, sound and
text streams, a partial order models each of a repeating pattern
of objects. In this case, each repetition or period represents a
single partial-order snapshot in a stream of sequential periods
of communication. This example and the one that follows both
illustrate periodic communications.

Consider a television news broadcast for the hearing im-
paired as shown in Fig. 4. This multimedia broadcast includes
two video components (normal broadcast and sign language
broadcast), two audio components (left and right channels),
and one text component (the subtitle). Assume the five compo-
nents have differing characteristics so that in each second there
are 30 images/s for the main video component, 10 images/s for
the hand signing, 60 sound fragmentsk for each audio channel,
and one subtitle text object per second consisting of either 1)
new text, 2) a command to repeat the previous second’s text,
or 3) a command for no text. These 161 objects are repeated
each and every second for the entire news transmission.

Fig. 5’s partial-order models the delivery the characteristics
of the multimedia presentation. Objects connected by a hori-
zontal line must be received in left to right order, while those in
parallel have no inherent ordering requirement. While objects
within each of the given five streams must be received in order,
there exists flexibility in delivering objects in different streams.

Example 4: This final example illustrates how performance
can be improved with a partial-order service. Improvements
are expected in several areas including: memory utilization,
delay, throughput, and bandwidth utilization. The following
hypothetical example highlights these gains. The values and
calculations below are not intended to be a rigorous analysis;
their purpose is simply to provide a more concrete illustration
of the potential savings.

Hypothesis: Assume an ATM network running on a 150
Mbps channel. Assume that 44 of the 53 octet cells are
available for user data thus resulting in an actual available

AMER et al.: PARTIAL-ORDER TRANSPORT SERVICE FOR MULTIMEDIA 443

Right Audio : 60 fragsec
Left Audio : 60 fraglsec

Video : 30 imagedsec

Closed Caption : 10 imagedsec

Subtitle : 1 commandsec

Fig. 5. Analogous partial order (Example 3).

I 1 *I Fixed Image

Subtitle

Animated Image

Sound
...

Animated Image

Sound
...

Fig. 6. Hypothetical multimedia example for performance analysis (Example 4).

bandwidth of roughly 125 Mbps. The following table sum-
marizes the size and transmission time of different objects:

object type size (octets) transmission time (ms)
animated image (ai) 50,000 3.200

subtitle 500 0.032
fixed image 30,000 1.920

sound fragment 320 0.020

Assume a roundtrip time (including delays at intermediate
packet switches) of 200 ms and a multimedia application
using the ATM network to remotely present two animated
image sequences, both with sound and one with an ongoing
subtitle; and one presentation with fixed images. These three
presentations are spatially and temporally independent. A two-
second period representing the repeating partial-order service
needed is shown in Fig. 6.

Assume the sender sends objects in numerical order and
only object 1 is lost or damaged by the underlying network
service. At the receiver depending on its receive window
size, a classic ordered transport protocol will buffer or reject
arriving objects 2 through k where k is the last object received
before a retransmission of object 1 arrives. To the contrary, a
partial-order transport receiver will accept and immediately
deliver objects 2 through k to the user since their delivery is
independent of object 1 . No buffering is required.

Suppose the strategy is to buffer the out-of-sequence objects
and to use selective positive acknowledgments with a sending
retransmission timer value of 250 ms.

Case I) No Flow Control: Before the 250 ms timeout, the
sender will send objects 2 through 119 (taking into account the
transmission time of each object), that is, 2 subtitles, 38 sound
fragments and 78 animated images. For an ordered service, the
needed buffer space for these objects will be 3.7 Mbytes. For
a partial-ordered service, no buffers are needed. Additionally,
the average end-to-end delay for objects 1-119 will be 231.1
ms for an ordered service while only 104.2 ms when a partial
order is used. In this scenario, the advantage of a partial order
is clear.

Case 2) with Flow Control: Assuming real-time replay of
the information at the receiver, one may assume that the
transmission of any animated image stream will be throt-
tled to an approximate rate of 25 imagesh or 1 every 40
ms. In this case, the sender will output a maximum of 7
images in each image stream before retransmitting object 1 .
That is, only objects 1-24 will be outstanding. Just prior to
receiving the retransmission of object 1, a classic ordered
transport protocol receiver will need to buffer 687 Kbytes,
again an amount of memory not needed with a partial-
order service. Similarly for objects 1-24, the average delay
will be 238.4 ms versus only 112.4 ms for the partial-order
service.

This example, while contrived, is meant to demonstrate that
the potential quantitative gains in using a partial order are

444

nontrivial. More detailed studies of actual expected gains are
in progress and will be discussed further later on.

In summary, these four examples illustrate the usefulness
of a partial-order service. They also illustrate that the partial
order is dependent on the application and may be specified at
different levels. Compare the partial order used in Example 1
where an entire video sequence is a single object to the cases
in Examples 3 and 4 where individual video frames are single
objects. The efficiency gained with a partial-order service will
depend on how an application designer chooses an appropriate
structure and granularity for the partial order.

A. Reliability Versus Order

While the most common transport protocols (e.g., TCP)
work hard to avoid the loss of even a single object, most
multimedia applications have a genuine ability to tolerate
loss. Losing one frame per second in a thirty frame per
second video, or losing a segment of its accompanying audio
channel, is usually not a problem. Bearing this in mind, the
proposed partial-order transport service combines partial order
with varying levels of loss that can be tolerated. Different loss
levels provide different levels of partial reliability,

Traditionally there exist four transport services: reliable-
ordered, reliable-unordered, unreliable-ordered, and
unreliable-unordered (see Fig. 7). Reliable-ordered service is
denoted by a single point where all objects are delivered in the
order transmitted. Traditional file transfer is an example appli-
cation requiring such a service. Reliable-unordered is a single
point where all objects must be delivered, but not necessarily
according to the order transmitted. Transaction processing
such as credit card verifications requires such a service.

Unreliable-ordered service allows some objects to be lost;
those that are delivered, however, must arrive in relative
order’. Since there are varying degrees of unreliability, this ser-
vice is represented by a set of points in Fig. 5. An unreliable-
ordered service is applicable to packet-voice or teleconferenc-
ing applications. If duplicates are not permitted, this represents
what some, but not all authors call “at-most-once” delivery

IEEWACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 5. OCTOBER 1994

reliabk-PO rdiable-unordered
wliablr-ordered ,,

minimal loss

unreliable-
unordered * *

Reliability

unreliable-
ordered **

maximal loss -.
O I

I I 1 I
1

service [20].
Finally unreliable-unordered service allows objects to be

lost and delivered in any order. This is the kind of service
used for normal email (without acknowledgment receipts) and
electronic announcements or junk email.

The concept of a partial order expands the order dimension
from the two extremes of ordered and unordered to a range of
discrete possibilities. R-PO service, for example, is appropriate
for the screen refresh described earlier in Example 2. U-PO
service is appropriate for general multimedia applications such
as the television news broadcast for the hearing impaired in
Example 3.

B. Related Work
Other authors have considered theoretical consequences of

channel ordering, or lack thereof, in the context of designing

ordered wid ordered unordered

Order

Fig. 7. Quality of Service: reliability versus order.

and verifying distributed algorithms [19], [23]. For example,
Ahuja shows that some conclusions derived on the design of
distributed algorithms need not have required FIFO ordering
as a base assumption [4]. Ahuja, however, assumes a sending
process dynamically builds the partial order and that no objects
are ever lost [13], [26]. Our work assumes a predetermined
partial order negotiated between the sender and receiver and
U-PO service allows objects to be lost. Also, Ahuja’s four
data types do not permit all possible partial orders of objects
as does Protocol POC.

Peterson et al. define a partial order on the messages com-
municated by a set of distributed processes and implements a
protocol Psync that encodes the partial ordering within each
message [24]. The partial order is defined by the interleaved
times that messages are sent and received in the shared
message space of the multiple communicating processes and
dynamically changes with each newly sent message. Our work
differs in its assumption of a point to point connection in which
both sides agree at any point in time to a partial ordering of
the data to be transferred.

111. QUANTIFYING AND COMPARING
PARTIAL-ORDER SERVICES

The complexity of a partial-order P can be quantified by its
set of linear extensions, denoted L(P) . Each linear extension
in the set L(P) is essentially one of the orderings of the objects
that is permitted at the destination. The number of linear
extensions of P, denoted e(P) , is thought as the best single
number which measures the complexity of P [28]. Clearly for
N objects, e(comp1ete order) = 1, e(no order) = N !

It is argued in [l] that e(P) appropriately quantifies a
desired partial order transport service in communication net-
works. Intuitively this metric correlates to the work a protocol
would have to perform to provide a particular partial-order
service. This is because the larger the number of permitted
orderings allowed at the destination, the less overhead is
expected to provide acceptable object delivery. For example,
the larger the number of allowable orderings, the smaller the
expected demand for store Objects
received out of order as shown in Example 4 in Section 11.

I An unreliable service (e.g.. common mail delivery by the postal system)
does not necessarily lose objects, simply it may do so without failing to
provide its advertised quality of service.

to

AMER et al.: PARTIALORDER TRANSPORT SERVICE FOR MULTIMEDIA 445

Several interesting questions related to linear extensions and
therefore to a partial order service are now discussed.

A. Reliable Partial-Order Service

Given a particular partial order, just how many orderings
are permitted at the destination if no losses are permitted?
Answering this question allows one to quantify and compare
two or more R-PO services. Unfortunately, there is currently
no known formula for calculating e (P) for an arbitrary partial
order. Recently it has been shown that the problem of comput-
ing e(P) is #P-complete2 [9] . There is an 0 (N 5) algorithm,
where N is the number of objects, for computing e (P) for
partial orders that form a tree when all edges are considered
undirected [7]. Similarly, there is an O (N 8) algorithm for
computing e (P) for any graph (and therefore for any partial
order) where if the directions of the edges of P are not
considered, any resulting cycles are edge disjoint [121. Neither
of these forms, however, model multimedia applications.

If the partial orders under consideration are series-parallel
[28], calculation of e (P) is possible [l]. While not all appli-
cations calling for a partial-order service need a series-parallel
one, such a composition is reasonable for many applications,
particularly multimedia applications. For instance, the partial
orders in all of Section 11’s examples are series-parallel.
(Similarly, the Object Composition Petri-nets proposed by
Little and Ghafoor as a basis for modeling the synchronization
and ordering of multimedia entities often are series-parallel
[211, 1221.1

Using “;” and ‘‘1)” as notation for series and parallel com-
position, respectively, the Anatomy and Physiology Instructor
multimedia presentation of the human heart (Fig. 1) can be
defined as

((1 I1 2); (3 II 4); (5 II 6); (7 II 8); (9 II 10); (11 II 12))

From [28, Example 35.41, the following formulae for series-
parallel compositions are known. If X I , . . . , XI, are k partial
orders with n1, . . . , nk objects, respectively, then X I ; . . . ; XI,

and X I 1 1 . . . 1 1 Xk have N =
k

ni objects, and
2 = 1

IC

j = 1

j=1

Note that these formulae differ only by a multinomial
coefficient which accounts for the allowed interleaving in
parallel composition.

* #,P-complete is a similar concept to NP-complete, however, it refers to
counting problems rather than decision problems. The significance is that it
is unlikely that polynomial time algorithms exist for #P-complete problems.

B. Unreliable Partial-Order Services
Just how much more flexible is a partial order with partial

reliability (i.e., loss is permitted)? Suppose a destination
application not only permits objects to arrive in a partial order,
but that it also tolerates an occasional missing object. Let
e;(P) denote the number of linear extensions permitted by
a partial-order P that tolerates the loss of exactly i objects
where eo(P) represents what previously was denoted e(P) .
This section provides formulae for e i (P) analogous to those
in the previous section whenever P is series-parallel.

If a receiving application can tolerate the loss of some
objects, then the destination partial-order service conceivably
could more flexibly deliver those objects that arrive out of
order from the network (even in terms of a defined partial
order) by simply assuming certain expected ones were lost.
The amount of added flexibility when i objects can be lost
can be quantified by considering all possible variations of each
valid ordering of N objects with up to and including i of them
missing. For example, the partial order in Fig. 3(b) permits two
linear extensions: (1 2 3 4) and (1 3 2 4). If the loss of any
single object is tolerated, then the number of delivery orders
that the destination could accept increases to eight: (I 2 3 4),
(1 3 2 4) and (1 2 3), (1 2 4), (1 3 2), (1 3 4), (2 3 4), (3 2 4).

More precisely, if partial-order X has a single object, then
eo(X) = e l (X) = 1 and V;>z[e i (X) = 01. (One cannot lose
two or more objects from a partial order that only has one
object.) If partial-orders X I and X Z are combined in series and
i objects can be lost, the resulting number of linear extensions
is:

e i (~ 1 ; ~ 2) = e j (x l>e i - j (x z) . (1)
j = O

Equation (1) sums all combinations of losing i and 0 objects
from partial-orders X1 and X Z , respectively; plus losing i - 1
and 1 objects from X I and X2, respectively; ..., plus losing
0 and i objects from partial-orders X1 and X2, respectively.
Analogously

(2)
where by definition i! = 1 for i 5 1.

The number of terms in a general formula for e , (X) , where
X is a composition (either series or parallel) of IC > 2 partial
orders, can be based on the number of compositions of i .
Compositions3 of i are expressions of i as a sum of positive
integers with regard to order [614. For instance, there are 8
compositions of the integer 4: (1 + 1 + 1 + l) , (2+ 1 + l) , (1 +
2+1), (1+1+2)! (2+2), (3+1), (1+3) and (4). Reference [2]
presents a general formula of e; (X) based on the partitions of
i; this formula is simplified here by considering compositions.
The overall number of terms in the formula increases, but each

3Unfortunately, the term composition has two meanings. To minimize
confusion, “composition” is used to refer to the combining either in series
or in parallel of two or more partial orders. ”Composirion” (in italics) will
refer to the mathematical concept of a set of integers summing to an integer
a.

4Partitions of z do not take order into account.

446 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 5 , OCTOBER 1994

one is simpler to represent. Thus by using compositions, the
general formula is more readable.

Intuitively, when composing k partial orders, either in series
or in parallel, with i losses, it is possible to have 1 loss in each

,=1 i l=l ;r=;l+l
(J # ~ I) A (J # ~ ~)

of i partial orders and none in the others; or 2 losses in a single
partial order, 1 loss in each of i - 2 partial orders and none in
the others; or 2 losses in each of 2 partial orders, 1 loss in each
of i -4 partial orders and none in the others; ...; or i losses in 1
partial order and none in the others. If the ranges of summation
variables are properly defined, all of the linear extensions that
result from all of these composition possibilities are mutually
exclusive. Thus in a general formula, there will be one term
in the calculation of e,(X) for each composition of i. Each
term itself must consider all possible combinations of partial
orders in which the losses occur, thus resulting in multiple
summations over all partial orders.

When partial orders are combined in series, one computes
the product of the number of linear extensions of each partial
order [with or without its permitted loss(es)] to compute
the total number of possible ways the extensions can be
combined. If the partial orders are combined in parallel, then
one also must consider all possible interleavings of a single
linear extension from each one. This results in an additional
multinomial coefficient hereafter denoted Pz,3 (coefficient for
the j t h composition of i losses).

If X I , . . . , Xk are k partial orders with 7 1 1 , . . . , nk objects,
respectively, then X~;...;,YI, and X I 1 1 . . . 1) Xk have

N = nJ objects, and the formulae for e l , e 2 . and e 3 are

as follows. A single formula is presented for composition
either in series or in parallel. For series compositions, all P z , J

coefficients = 1; for parallel compositions, each PZ,? coefficient

k

3=1

if (k 2 2)

where
(N - 2)!

p 2 , z = k

(nzl - l)!(ni2 - l)! J-J (n7!)
,=1

(3#zl)A(J#zz)

The two terms for e2 in (4) respectively represent all
combinations of 2 losses from 1 partial order and none from
the others; and 1 loss from each of 2 partial orders and none
from the others. In the second term, subscript i 2 takes on only
those values greater than subscript 21. This is to avoid counting
twice the case of a single loss in each of X, , and X r 2 .

where (N - 3)!
p 3 . 1 = b (5)

if (IC 2 2)

where is given.

(N - 3)! Several specific formulae are given in (3), (4), and (5) prior

k to the general formula for ea in (6) to provide an intuition into p 3 . 2 =
tlle structure and complexity of the general formula.

(722, - 2)!(nrz - I)! n (nl!)
,= l

(3#zl)A(3#22)
k

el = k 1 , 1 e l (X z) n e o (x ,)

+ 2 (p 3 , 3 e1(xzi)e2(xt ,) i e O (X 3)
r = l ,=1

3 # a

z l = l z z = a l + l ,=1

where PlJ = - (3) (~ # z i) A (~ # z 2)
(N - l)!

k
(,ai - l) ! n (n j !)

,=1
j # i

where
(N - 2)!

k P 2 , l = -

(.; - 2)!J-J(?Zj!)
j=&

if (k 2 2)

where

- (N - 3)!
P 3 , 3 = k

(n;, - l) ! (nr2 - 2)! (nJ !)

(j#zlj%#zA)

k - 2 k-l k I

AMER et a1 : PARTIAL-ORDER TRANSPORT SERVICE FOR MULTIMEDIA

15
16
17
ia
19

441

3,876 35,268 93;024 6559 9152
5,814 6559 93d6
342 6559 9657
19 6559 10000

969 3,414
171 280

1 1
19 19 - 1 -

where TABLE I
STATISTICS FOR PARTIAL ORDER IN FIG. 2

These formulae can be generalized by a single formula. Let

where #Comp(i) = the number of compositions of i, and
Term;,t is defined below. Each term for a series composition
assumes the coefficient Pi,t = 1. For parallel compositions,
the values are given.

Termi,t is based on the tth composition of i and is
calculated as follows. Let the tth composition consist of b

integers denoted X j = i. For

example, one composition of the integer 21 is X = (8 + 4 +
4 + 2 + 2 + 1).

Each Term;,t has b summations where b partial orders
“contribute” the lost objects and k - b partial orders contribute
no loss.

b

= { A l , . . . , Ab}. That is,
j=l

k-b+l k-b+2 k-b+3 k-1 k

if(k 2 6) (6)

where

(N - i)!
k. n

For an ordered or unordered service with N objects, ei
reduces to C:-i(= -) N ! and P$-z(= T), respectively,
where C and P represent combinations and permutations.

From a computational point of view, computing ei for a
partial order composed of multiple smaller partial orders is
simplified by composing them two at a time and repeatedly
using the formulae (1) and (2). The computational complexity
of computing ei is discussed further in [l I].

-
t -
1
2
3
4
5
6
7
8
9
10
11
12
13
14

75,582 4;912;613;408
92*378 1,516,456,832

339,093,456 ;i:zg 1 83,725,608 1
50,3bb 15,226,920
27,132 2.355.648
11.628 I 3111452 I

Unordsrsd(Pz-’)
121,645,100,408,831,000
121 , ~ ~ ~ , ~ o o , ~ o ~ , ~ ~ , o o o
6o,aa~,~~0.~04,~i6,000
20.274.183.401.472.000

3;016;991;577~600
335,221,286,400
33,592,126,640

253,955,520
19,635,040
1.395.360

3,047,466,240

,6016
,6233
,6376
,6466
,6517

,6554
,6558
,6559
,6559
,6559
,6559
,6559
,6559

-
m, -

5697
6069
6373
6642
6891
7124
7347
7560
7766
7966
6161
8354
6546
8740
6940

C. Comparing Partial-Order Services
Using arbitrary precision arithmetic routines, programs were

developed to compute ei values for an arbitrary series-parallel
partial order. Table I indicates e; values for 0 5 i < N for
the Anatomy and Physiology Instructor example in Fig. 2.

Additionally, the corresponding number of linear extensions
for an ordered and unordered service are tabulated. For exam-
ple, if no losses are permitted, there are 5,417,717,760 valid
orderings (i.e., linear extensions) out of the total possible 19!
(=121,645,100,408,832,000) orderings, a fraction of 4.453 *
10-8.

On comparing over five billion valid orderings in a partial-
order service with just one valid ordering in an ordered service,
the partial order seems quite flexible, yet a fraction on the
order of lo-’ hardly seems to reflect this. The significance
is visualized more easily by considering the number of valid
orderings on a normalized logarithmic scale. Therefore the
following normalized partial-order metrics in the interval [0,1]
are proposed where 0 represents reliable ordered service,
values from 0 to 1 represent increasingly more flexible partial
reliable, partial-order services, and 1 represents unreliable
unordered service. For partial-order X containing N objects
and considering a service with i losses:

j = O M ; (X) = f o r O F i < N

j = O

The metric m i (X) represents a relative comparison between
the number of permitted extensions of a partial order and an
unordered service for N objects and exactly i losses. The
metric M ; (X) represents a similar relative comparison, but for
i or fewer losses. The m; and Mi values for the multimedia
example in Fig. 2 also are tabulated in Table I.

These metrics provide better insight into this partial order’s
flexibility than do the e; values. The metrics m; and M;
allow one to quantify and compare partial orders with respect
to communication constraints independent of N . Consider,

44s IEEWACM TRANSACTIONS ON NETWORKING. VOL. 2, NO. 5, OCTOBER 1994

Fig. 8. 111, (+) and *U, (0) versus values for partial order in Fig. 2.

constraint, the number of linear extensions is 6,273,146,880;
less than 15% of the general e2 value of 49,662,412,800.

IV. ESTELLE PROTOCOL SPECIFICATION
While calculating e i (P) is useful for evaluating and com-

paring partial orders, it remains a practical problem for a
destination to determine as objects arrive if they are in one
of the valid orders as defined by P. That is, is the amving
order a member of L(P)? If not, arriving objects must be
buffered to guarantee the particular partial order in agreement
at the time.

Enumerating L (P) is equivalent to finding all possible
topological sortings for a given partial order [181. Fortunately
in practice, a destination need not enumerate L (P) to decide
if an arriving object can be delivered. The destination merely
needs to see if the arriving object satisfies the defined partial

This example leads to the conjecture that as the number
of tolerated losses increases, U-PO service never decreases in
flexibility relative to an unordered service that tolerates the
same number of losses. That is. both mi(X) and M i (X) are
nondecreasing functions of ,i;

If this conjecture were not true, then in some cases, one would
be increasingly more motivated to use an ordered service for an
application having only partial-order constraints as toleration
for loss increased. This seems counterintuitive.

Similarly, study of m, and M, demonstrates that for i #

(and analogously for MI) . Merely because partial-order A is
more flexible than partial-order B when i (or fewer) losses can
be tolerated, A may be less flexible than B when j > i (or
fewer) losses can be tolerated (contrary to the authors’ initial
intuition).

The above formulae for e, assume that all objects are
equivalent from the viewpoint of loss. In some applications,
however, this may not be true (see Section IV-Bj. For exam-
ple, in Fig. 2, perhaps one could tolerate the loss of any single
pair of associated parallel ob-jects in 1 through 12 [i.e., (1,2) or
(3,4j or ... or (11,12j], but not any single or any random two
of the nineteen objects. The previous formula for calculating
e2 allows any two objects to be lost and thus overestimates
the number of valid linear extensions with this constraint.

One can take into account such restrictions when computing
any e, value. In this example, one can recompute the e2 value
for just the partial order consisting of objects 1-12, and define
e2 = 0 for the other five parallel composed partial orders
(objects 13-19). Additionally, this constraint implies el = 0 for
all six parallelly composed partial orders. With this particular

j ,m,(X1) < m,(X2) does not imply m , (X 1) i m,(X2)

A. Protocol POC

Our protocol, entitled Partial-Order-Connection (POC) dy-
namically updates its information each time an object amves.
It is specified in the language Estelle (see Appendix A),
an IS0 Intemational Standard Formal Description Technique
for specifying communication services/protocols and, more
generally, distributed systems [8], [171. The specification has
been designed and validated using several formal description
tools: Pet-Dingo, a portable Estelle translator and distributed
generator for simulations [27]; and GROPE, a simulation sys-
tem that provides graphical animation to visualize an Estelle
specification [5].

Since it makes no practical sense to put a POC on top of a
service that is already fully ordered and fully reliable, Protocol
POC expects that the underlying network service is unreliable.
It will lose and duplicate objects, and sometimes deliver them
out of the order transmitted. In all cases (R-PO and U-PO),
Protocol POC will remove duplicates.

The sender transmits (possibly repeating periods of) N
objects using at most NUM-SND-BUFFERS to remember
unacknowledged objects outstanding at any moment in time.
The receiver is assumed to have NUM-RCV-BUFFERS with
which to temporarily store out of order objects. In case of re-
peating periods, the sender and receiver distinguish identically
numbered objects from different periods by a period number.

B. Object Reliability Classes

In Section 111’s discussion of U-PO service, all objects are
equal with regards to their reliability. This classification is
reasonable if all objects are identical (e.g., video frames in
a 30 frame/s film). Applications that require a partial-order
service, however, may contain a variety of object types. Thus,
Protocol POC defines three object reliability classes within a
U-PO service: BART-NL, BART-L, NBART-L, where it is the

AMER et al.: PARTIAL-ORDER TRANSPORT SERVICE FOR MULTIMEDIA 449

application’s responsibility to define which object belongs to
which class5. While classic transport services generally treat
all objects equally, the sending and receiving functions of
Protocol POC behave differently for each class of object.

BART-NL objects must be delivered to the destination.
These objects have long temporal value that lasts for an entire
established connection and require reliable delivery. If all
objects are of type BART-NL, the service is R-PO service.
An example of BART-NL objects would be the windows in
the screen refresh Example 2 of Section 11. To assure eventual
delivery of a BART-NL object in Protocol POC, the sender
buffers it, starts a timeout timer, and retransmits it if no ack
arrives before the timeout. The receiver in turn returns an
ack when the object has safely arrived and been delivered
or buffered.

BART-L objects have temporal value over some intermedi-
ate amount of time, enough to permit timeout and retrans-
mission, but not everlasting. Once the temporal value of
these objects has expired, it is better to presume them lost
than to delay further the delivery pipeline of information.
One possibility for deciding when an object’s usefulness
has expired is to require each object to contain information
defining its precise temporal value [14]. An example of
a BART-L object would be a movie subtitle which is to
be displayed during a twenty second film sequence. If not
delivered sometime during the first ten seconds, the subtitle
loses its value and can be presumed lost. In Protocol POC,
these objects are buffered-acked-retransmitted up to a certain
point in time and then presumed lost.

NBART-L objects are those associated with strict real-time
applications. Their temporal values are too short to bother
timing out and retransmitting. An example of a NBART-L
object might be a single packet of speech in a packetized
phone conversation or one image in a 30 image/s film. In
Protocol POC, a sender transmits these objects once, and the
service makes a best effort to deliver them. If the one attempt
is unsuccessful, no further attempts are made.

Protocol POC’s general architecture is shown in Appen-
dix A. A User-Sender (e.g., sending application) supplies
objects to the POCSender according to the partial order,
not necessarily in sequence order 1 , 2 , . . . ,N,1,2, . . . The
partial order defines both the possible orders of transmission
by the sending application and the orders of delivery to
the receiving application. The POC-Sender buffers and, if
necessary, retransmits any BART-NL or BART-L objects that
are not acknowledged within a predefined timeout period.
The total number of unacknowledged BART-NL and BART-L
objects never exceeds (NUM-SND-BUFFERS }.

Each time an object arrives at the receiver, Estelle transition
Check-Newly-AmvinLObject becomes firable. If the object
is within the receiver’s window and is not a duplicate, it
is either immediately delivered to the User-Receiver (e.&
destination application) or, if not deliverable according to the
partial order, stored for future delivery. BART-NL and BART-
L objects are then acked. Out-of-partial-order objects for which

there is no available buffer space simply are discarded. When-
ever an object is delivered to the User-Receiver, transition
Check-Buffers-For-Delivery becomes enabled and checks all
occupied receive buffers to see if the just delivered object now
enables the delivery of any stored objects.

Due to practical page constraints, the Estelle specification
in Appendix A is abbreviated only to include the architecture
and data transfer phase. It is assumed that a connection already
has been established, and that an initial partial order and vector
defining the reliability class of each of the N objects has been
negotiated.

The full data transfer phase allows the POC-Sender and
POC-Receiver to change the partial order dynamically. Dy-
namic changes are to be permitted although the POC-Sender
and POC-Receiver are obligated to complete one partial
order before beginning another. A sender and receiver may
not handle multiple different partial orders simultaneously.
Currently the authors predict any gain in performance would
be minor and not worth the added complexity needed to permit
multiple orders.

Any partial order can be represented in N (N - 1)/2 bits
as an N X N upper-triangular matrix where N is the number
of objects in the partial order [11. If the partial order is series-
parallel, it can be represented as the intersection of two total
orders [29]. By assuming one total order to be I , 2 , N , a
series-parallel partial order can be encoded in N log N bits.

For a U-PO service with BART-L and NBART-L objects,
a POC-Receiver can decide at any time that an object is
presumed lost and then continue delivering objects as if the lost
one had been delivered. This represents the situation where
a multimedia application decides that an object has lost its
temporal value. To decide when to presume an object is lost,
POC-Receiver includes transition Validate-Temporal-Value
to regularly check if delivery to the User-Receiver of each
expected object in the reception window is still worthwhile.

As soon as an expected BART-L or NBART-L object’s
temporal value expires as determined by a call to a special
function Is-Object-Still-Useful, the object is presumed lost.
Then all currently buffered objects are checked to see if their
delivery is now enabled. Should an object that was presumed
lost arrive later, it will be discarded since it is no longer of
any value, and if type BART-L, it will be acknowledged to
stop its retransmission by the sender. Thus for this protocol,
an ack is sent any time a BART-L object is delivered, stored,
or presumed lost; as a result, it is possible to ack an object
that has not yet been sent.

The details of Is-Object-Still-Useful are not defined in
Appendix A. This function can be intemal to Protocol POC,
in which case each object is required to contain information
defining its precise temporal value. Otherwise this function
must contact the User-Receiver to decide when an object is
no longer valuable. The latter approach requires coordination
between the User-Receiver and the POC-Receiver.

In regards to the metrics discussed in Section 111, when the
set of presumed losses exceeds a defined limit as determined
by a function assumed to have been negotiated at connection
establishment, a message is Sent to the User-Receiver indicat-
ing the negotiated QOS is not being provided. It is then up

BART stands for (Buffers, Acks. Retransmissions, Timeouts), four mech-
anisms employed to obtain reliability. L indicates that loss is permitted; NL
indicates no loss is allowed.

450 IEEUACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 5. OCTOBER 1994

to this user to determine whether or not to continue with the
partial-order service.

It is emphasized that while closed-form formulae for com-
puting m i (X) and M , (X) exactly are provided only for
series-parallel partial orders, Protocol POC is applicable for
any partial order, not only those that are series-parallel. When
a partial order contains BART-NL objects, the ei values are
reduced since certain linear extensions with loss are no longer
permitted. Calculation of ei in this case uses the same formulae
derived in Section 111 with the single difference that initial
values el (X) equal 0, not 1, whenever X is a partial order
representing a single BART-NL object.

V. CONCLUSION

This work 1) introduces and motivates a partial order,
partial reliable transport service/protocol, 2) investigates the

definition and calculation of metrics for quantifying a partial-
order service, and 3) provides a formal Estelle specifica-
tion of a protocol that provides partial-order service. The
authors currently are simulating Protocol POC using OP-
NET, a networking simulation system, and implementing
a partial-order version of TCP based on a submitted RFC
[IO]. The simulation and empirical studies will evaluate more
precisely the expected delay/memory/bandwidth performance
improvements compared to an ordered service for various
combinations of 1) different partial orders and loss tolerances
(i.e., different m; and Mi values), 2) different distributions
of disorder and loss supplied by the underlying service, and
3) different sender-receiver window sizes. The goal is to
better understand the potential performance gains when using a
partial-order service over the full range of unreliable network
services.

APPENDIX

IZSTELLE SPECIFICATION OF PROTOCOL: PARTIAL-ORDER CONNECTION

const I = ...; E # tsdus in negotiated PO per period 3
IUH-PARTIAL,ORDER-BITS = (1*(1-1)/2) { # bits to encode partial order >
~-DAIA-PER-I-OR-T,SDU = ... ; { i n f o data bytes per nsdu or tsdu 3
IU¶,BCV-BUFFERS = ...; { 1: of receive buffers 1
HAX-PEBIOD,PER,RU = ...; { = ceiling((IIRI-RCV-BUFFERS - l)/W + 1 1

IUX,SID-BUFFERS = ... ; { # of send buffers 3
SIZE-OF-IEEDS-ACK = ...; { >= 2. m a x 1: periods before needs-ack array cycles 3

EKFTY = -1; { represents empty/null snd/rcv buffer 1
ACK-TIHEOUT = . . . ; { sender’s timeout before retransmissions 3

HAX,PERIOD~PER~RU~HIIUSl = (HAX-PERIOD-PER-RU - 1)

SIZE,OF-IEEDS-ACK-HINSl (SIZE-OF HEEDS-ACK - 1)

CHECK-VALIDITY-IITERVU = . . . ; { timeout for check if objects in rcv buffers have temp r d n e 1
type sdu-info-type

tsdu-type
nsdu-type = record header: integer; seqnam, period: integer; WO: sdu-info-type; end;
ident-type
PO-matrix-type
partial-order-type
reliability-type = (IBART-L.BART-II,BART-L);
partial-reliability-type
array-1-1-of-boolean-type = array [l. .I] of boolean;

’ = array [l. .~-DATA-PER-I-ORT-SDU] of integer;
= record seqnum, period: integer; i n f o : sdn-info-type; end;

= record period, saqnam: integer; end;
= array Cl. .1,1. .#I of 0 . .1;
= array [1..IUH~PARTI~~ORDEa~BITS] of integer;

= array [1..1] of reliability-type;

channel tsda,channel(nsr.pvd); { connects user/application and partial-order-service
by usr: t-data-req(tsdu: tsdu-type);
by pvd: t-data,ind(tsdu: tsdu-type); QOSLoss-failed; po-not-respected(period,seqnam: integer);

by uar,pvd: n,data-req(nsdn: nsdu-type); n-data-ind(osdu: nsdu-type);
channel nsdu-channel(usr,pvd); { connects partial-order-service and network

ackcperiod: integar; seqnum: integer);

AMER et al.: PARTIAL-ORDER TRANSPORT SERVICE FOR MULTIMEDIA 45 1

module POC-type activity; ip ucep: tsdu-channel(pvd); lcep: nsdu_channel(ur); end;
body POC-Sender-Body for POC-Type;
state active;
type needs-ack-type = array ~l..~,O..SIZE~OF~IEEDS~ACX~HIRlJSll of boolean;

v a r nsdu : nsdu-type;
snd-buffers-type = array c l .. lfUH,SID-BUFFERSI of tsdu-type;

snd-PO-mat rix : PO-matrix-type;
partial-order : partial-order-type;
PR-rector : partial-reliability-type; { vector describing partial reliability
partial-reliability: partial-reliability-type;
and-used-buffers : integer; { t send buffers currently in use
snd-buffers : and-buffers-type; { contains sent BART tsdus awaiting ack
needs-ack : needs-ack-type; { true if tsdn i of per. cj mod SIZE-OF-IEEDS,ACK] awaits ack
earliest-per : integer; { period represented by firqt column of needs-ack
snd-curr-per : integer; { period for which tsdu are being sent;

num-curr-per-tsdu-sent: integer; num tsdus of current period already sent once

{ negotiated partial reliability

f not necessarily 1st period of objects awaiting ack

procedure FreeSndBuffer(period, seqnum: integer; var snd-buffers: snd-buffers-type;
var snd-used-buffers: integer) ; primitive;

{ find stored tsdu(period,tsdu) and free the buffer
procedure

procedure

Init-PO-Hatrix(iar snd-PO-matrix: PO-matrix-type; partial-order: partial-order-type); primitive;

Init-PR-Vector(var PR-vector : partial-reliability-type;
{ initialize upper right triangular snd-PO-matrix with negotiated partial order

{ initialize PR-rector with negotiated partial-reliability

1

partial-reliability: partial-reliability-type); primitive;
1

function IsObjactInSndBuffers(period: integer; seqnum: integer): boolean; primitive;

function IsPORespectad (period: integer; seqnum: integer): boolean; primitive;
true when given tsdu respects partial order.

function IsObjectSendable(period: integer; seqnum: integer): boolean; primitive;
returns true when tsdu(period,seqnud can be sent for the first time

procedure Store-Sant-tsdu(tsdu: tsdn-type; var snd-buffers: snd-buffers-type;
iar snd-usad-buffers: integer); primitive;

{ find an empty buffer in snd-buffers and store tsdn in it

{ true when tsdu (period,seqnum) is in one of the snd buffers

procedure Update-aeeds-Ack(var needs-ack: needs-ack-type; var earliest-per: integer;
period, seqnum: integer) ; primitive;

{ when ack arrives, update knowledge of outstanding acks
procedure Updat~-Snd_PO-Hatrix(rar snd-PO-matrix: PO-matrix-type; v i v num-Curr-per-tSdn-8ent: integer;

var snd-curr-per: integer; seqnum: integer); primitive;
{ each time an object is sent, the dynamic PO matrix has to be updated

E use info in tsdu to form nsdu
procedure Prepare-nsducvar nsda: nsdu-type; tsdu: tsdu-type); primitive;

initialize t o active
rar i,j: integer;
begin
snd-curr-per : = 1 ;
num,curr-per-tsdu-sent := 0 ;
snd-used-buffers := 0 ;
for i := 1 to I do for j := 0 t o SIZE-OF-IEEDS-ACX,nIIUSl do needs,ackCi,j] := true;
earliest-per := 1;
for i := 1 to IUH-SIID-BUFFERS do

begin
snd-buffers[i] .period := EHPTY;
snd-buffersci] .seqnum :* W T Y ;
for j := 1 to IUn-DATA-PER-I-OR-T-SDU do snd~buffers[i].inio~j] := MPTY;
end ;

Init-PO-Hatrix(snd-PO~atrix,partial-order);
Init-PR-Vector(PR-vector,partidl-reliability);
end ;

trans
from active to active
when ncep.t-data-req(tsdu)
provided IsObjectSendable(tsdu.period,tsdu.secplam)

name Data-Request :
begin
Update-Snd-PO-Hatrix(snd_POaatrix, nam,curr-per-tadu-sent ,snd,curr-per ,tsdn. seqnum) ;

{ User-Sender wishes to transmit an object to User-Receiver

1

1

452 IEEWACM TRANSACTIONS ON NETWORKING, VOL. 2. NO. 5, OCTOBER 1994

if (needs-ack[tsdu.seqnnm, tsdu.period mod SIZE,OF-IEEDS-ACK]) then
begin
Prepare-nsdu(nsdu,tsdu); E
output 1cep.n-data-reqCnsdu); { tranamit the object E
{ buffer all BART objects in case later retransmission is needed E

else { assert: PR = IBART-L; by def, on sending IBART-L object, no need to wait for ack

{ nsdu is based upon i n f o within given tsdu

if (PR-vectorCtsdu.seqnum1 = BART-L) or (PR,vector~tsdu.seqnuml = BART-EL) then
Store-Sent-tsdu(tsdu,snd-buffers.snd-used-b~ers)

Update~Eeeds~Ack(needs~ack,earliest~per.tsdn.period,tsdu.seqn~~;
>

end ;
{ else tsdu has been previously declared lost; it is not sent
end ;

1

from active to active
when ucep.t-data-req(tsdu)
provided not(IsPORespected(tsda.period,tsdu.seqnum))

User-Sender tries to transmit an object not according to the partial order }

name Error-in-Data-ReqaeCt:
begin { user is warned it did not respect the negotiated partial order
output ucep.po-not-respected(tsdu.period,tsdu.seqnum)
end ;

from active to active
when lcep.ack(period.seqnum)

name Ack-Management:
begin
if IsObjectInSndBnffers(period,seqnum) then

{ An ack returned from the User-Receiver qrrives from the letwork

begin
Updat e-Eeeds-Ack(needs-ack, earliest-per ,period, seqnum) ;
FreeSndBuffer(period,seqnum,snd-buifers,snd,used,bntiers);
end

begin { ack is either duplicate ack or ack of a declared lost tsdu not yet sent
{ check if ack is in one of the periods being monitored by needs-ack array
if (earliest-per <= period) and (period < (earliest-per + SIZE-OFJEEDS-ACK)) then

Update~leeds~Ack(needs_ack,earliest~per,period,seqnum);
{ when (snd-carr-per < periodj then ack = duplicate; discard it
end ;

else

end ;

from active to active
any I : 1. .EUn-SIID-BUFFERS do
provided snd-buffers[X].period <> EMPTY
delay (ACK-TIMEOUT)

{ Retransmit objects if expected ack has not arrived

name Timeout-Retransmit :
begin
Prepare-nsdubdu, snd-buff ers [X I 1 ;
output lcep .n-datn-req(nsdn) ;
end;

end ;

body POC-Receiver-body for POC-type;
state active;
type rcv-buffers-type = array [l..E'Un-RCV-BUFFERS] of tsdu-type;

stored-type
rcv-proc-obj-event-type
rcv-adj-per-event-type

= array ~O..HAX,PsRIOD~PER~R~~HIlRlSl,l..I] of integer;
= (LOSE-OBJ, DELIVER-IEV-OBJ , DELIVER-BUF-OBJ) ;

= (OBJ-PROCESSED, OBJ-STORED, WIT-EDGES) ;
var tsdu: tsdu-type;

rcv-used-buffers : integer; { # rcv buffers currently filled
rcv-PO-matrix : PO-matrix-type ; { dynamic partial order matrix
partial-order : partial-order-type; { negotiated static partial order
PR-vector
partial-reliability: partial-reliabilit~_tJpe; { negotiated partial reliability
delivered : array-l-l,of-boolean_type; 4 true if tsdnCi] was dqlivered
lost : array-1-l-of-boolean-type; { true if tsduci] assumed lost
rcv-buffers : rcv-buffers-type; { buffers for out of order tsdus
check-buffers : boolean;
rcv-curr-per : integer; { period of objs being delivered
stored : stored-type; { indicates buffer location of stored tsdu
num-buffable-per : integer; { # successive periods which may be fully or partially buffered
last-buffable-per : integer;
rcv-proc-obj-event: rcv-proc-obj-event-type; { receiver events
rcv-adj-per-event : rcv-adj-per-event-type;
num-obj-curr-per-deliv-lost : integer; { t objects in current period already delir'd or lost
max-num_obj_last-buffable-per : integer; € m a r objects in last-bufferable-per
curr-num-obj-last-buffable-per: integer;

: Partidl-reliability-tJpa; { dynamic vector describing partial reliability

{ if true, check stored tsdus for possible 4elivery

{ last period for which objects may be buffered

current objects in last-buffable-per

E
E
E
E
E
1
E
1
E
E
E
E
E
E

E
1
>

AMER et a l . PARTIAL-ORDER TRANSPORT SERVICE FOR MULTIMEDIA 453

function IsObjectStiLlUsefal(seqnnm: integer): boolean; primitive;

function IsQOSLossExceeded: boolean; prjmitive;

function IsObjectDeliverable (rcv-PO-matrix: PO-matrix-type; tsdu: tsdn-type): boolean; primitive;

procedure Init-PO-Hatrix(var rcv-PO-matrix: PO-matrix-type; partial-order : partial-order-type) ; primitive;

procedure Init-PR-Vector(var PR-vector : partial-reliability-type;

{ return truti if particular object still has temporal value; otheroise false

{ true if most recent loss results in less than negotiated QOS

{ true when tsdu respects partial order and can be immediately delivered

{ initialize PO-matrix with negotiated partial order

{ initialize PR-vector with negotiated partial reliability class informat ion

{ find an empty buffer in rcv-buffers and store tsdu in it 1

{ object has been: delivered immediately upon arrival (DELIVER-IEY-OBJ) or delivered from >
{ a buffer (DELIVER-BUF-OBJ) or preanmedlost (LOSE-OBJ); perform needed processing >
{ determine .t of buffers to reserve for objects in current period 1

{ Determine if object is currently being buffered >
{ check if object 1
{ either Delivered or lost; or C. Buffered >
{ check if object can be buffered >

>
1

>
1

partial-reliability: partial-reliability-type); primitive;
1

procedure Store-Receiv~,d-tsdu(tsdu: tsdu-type; ~ a r rcv-buffers: rcv-buffers-type;
var rcv-used-buffers: integer); primitive;

procedure Process-Object(seqnnm: integer; rcv-proc-obj-event: rcv-proc-obj-event-type); primitive;

function IumUndelirabl~Objects(matrix: PO-matrix-type): integer; primitive;

function InBuffer(tsdu: tsdu-type): boolean; primitive;

function AlreadyProcessed(tsdu: tsdu-type): boolean; primitive;
is A. Before receiving current period; B. In receiving current period and

function IsObjectBufferable(tsdu: tsdu-type): boolean; primitive;

function IsObjectReceivable(rcv-PO~atrix: PO-matrix-type; tsdu: tsdu-type): boolean;

procedure Adjust-Last-F.eriod(rcv-adj-per-event: rcv-adj-per-event-type; period: integer); primitive;

procedure Prepare-tsdu(nsdu: nsdu-type; var tsdu: tsdu-type); primitive;

primitive;
{ check if object is either deliverable or bufferable

{keep track of latest period for which an object can be buffered

1 extract info from nsdu to produce tsdu;

1

> no need t o extract nsdu header

initialize to active
var i,j: integer;
begin
nnm-buffable-per := 0;
check-buffers := false;
rcv-used-buffers := 0;
for i:= 1 to IUX-RCV-BUFFERS do

begin
rcv-buff ers [i] .period : = EHPTY;
rcv-buffersCi1 .seqnum := MPTY;
for j : =1 to IUII_DATA_PER-II_OR_T_SDU do rcv-buff ers [il . info [j] : = MPTY;
end ;

begin .
for j := 0 to ~X-PERIOD-PER-RU4IISl do stored[j,il := EHPTY;;
lostCi1 := false;
delivered[i] := false ;
end;

for i := 1 to 1 do

Init-PO-Hatrix(rcv-POaatrix,partial-order);
Init-PB-Vector(PR-rector ,part ial-reliability) ;
rcv-curr-per := 1 ;
nam_obj_cnrr-per,deliv_loat :f 0;
cnrr-num-obj-lastJmffable-per := 0;
mar,nnm_obj_last,buffable,per := 0;
Adjust-Last_Period(IlIT-EDGES ,rcv-curr-per) ;
end ;

trans
from active to active
when 1cep.n-data-indhsdu)

{ An object from User-Sender arrives from the network

name Check_lewl~,A~iring-Object :
begin
Prepare-tsdu(nsdu,tsdu);
if IsObjectReceivabXe(rcv-PO-matrix,tsdu) then

{ extract important info from arriving nsdu

begin
if IsObjectDeliverable(rcv-PO-matrix,tsdu) then

begin { deliver the tsdu
output ucep.t-data-ind(tsdu);
Process_Obj~ct(tsdu.seqnum,DELIVER-IEY-OBJ);
Adjust-Last-Period(OBJ-PROCESSED,tsdu.period);
end

454 IEEEIACM TRANSACTIONS ON NETWORKING, VOL. 2, NO. 5. OCTOBhR 1994

else
begin
Store-Received-tsdu(tsda,rcv-brrff er8 ,rcv,used,buffers) ;
Ad just -Last -Period (OB J-STORED , t sdu . per iod) ;
end ;

output lcep.ack(tsdu.period,tsdu.seqnum);
if (PR~vector~tsdu.seqnom~ <> PBART-L) then

end

{ cannot deliver nor buffer; send ack if a duplicate
begin
if AlreadyProcessed(tsdu) and (PR-vector[tsdu.seqnuml <> IBART-L) then

end ;

else

output lcep.ack(nsdu.period,nsdu.seqnd;

end;

from active to active
provided check-buffers and (1 <= rcv-used-buffers)

{ Check if any currently buffered objects can be delivered to User-Receiver

{ enabled vhen an object delivered or lost provided at least one buffer is full
var i, buf-number: integer;
name Check-Buffers-For-Delivery:
begin
while check-buff ers do

begin { loop until one complete loop fails to deliver an object
check-buffers := false;
for i := 1 to I do

begin
buf -number : = storsdCrcv-curr-per mod BAX-PERIOD-PER-RU,i] ;
if (buf-number <> EHPTY) then

if IsObjectDeliverable~rcv~PO_matrir,rcv~b~ers~uf~number]~ then
begin { a deliverable buffered object has been found 1
output ucep.t-data-ind(rcv-bnffera[buf-numberl);
Process~Object~rcv~buffers[buf~namber].seqnum,DELIVER~BUF~OBJ~;
Ad'just~Last~Period(OBJ~PROCESSED.rcv~bnffersCbuf~numberl.period);
end;

end;
end ;

end ;

from active to active
delay (CHECK-V~IDITY..IlTERVIL)

{ Periodically check objects for temporal value

var i: integer;
name Validate-Temporal-Value:
begin
for i := 1 to I do

if (not (dsliveredCi1 or lost[i] or IsObjectStillUseful(i))) then
begin { found nonuseful object; presume it lost
Process-Object(i.LOSE-OBJ) ;
if IsQOSLossExceeded then output ucep.QOSLoss-failed;
if PR-rectorCil = BART-L then output lcep.ack(rcv-curr-per,i);
Ad just ,Last,Period(OBJ-PROCESSED ,rcv-cnrr-per) ;
end ;

end;
end ;

1

1

I

)

body letwork-body for Ietvork-type; external; { netvork service betveen transport protocol entities 1

1 { Hain Specification ...

{ - - -- -- - ---- - -- --- - -.-- letwork Layer ...
module letwork-type activity; ip lcepl : nsdu-chanuel(pvd) ; lcep2: nsdu-channel(pvd) ; end;

modvar
initialize

User-Sender,Uaer-Receiver: User-type; POC-Sender, POC-Receiver: POC-type; Ietwork: Ietvork-type;

begin
init User-Sender vith User-Sender-body;
init User-Receiver with User-Receiver-body;
init POC-Sender vith POC-Sender-Body;
init POC-Receiver vith POC-Receiver-body;
init letuork vith Betaork-body;
connect User-Sender.acep to POC,Sender.ucep;
connect User,Receirer.acep to POC,Receiver.ucep;
connect POC-Sender.lcep to 1etvork.lcepl;
connect POC-Receirer.lcep to Ietaork.lcep2;
end ;

end.

AMER et al : PARTIAL-ORDER TRANlSPORT SERVICE FOR MULTIMEDIA 355

ACKNOWLEDGMENT [281 R. Stanley, Enumerative Combinatorics: k lume I . Wadsworth +
Brooks/Cole Advanced Books & Software, Monterey, CA, 1986.

(291 J. Valdes, R. Tarjan, and E. Lawler, “The recognition of series parallel
digraphs,” SIAMJ. Comput., vol. 1 1 , no.2, pp. 298-313, 1982.

The authors gratefully thank the anonymous referees for
their substantive suggestions.

REFE.RENCES

P. D. Amer, C. Chassot, T. Connolly, and M. Diaz, “Partial order
transport service for multimedia applications: Reliable service.” in Proc
2nd High Perform. Distrib. Comput. Con$ (HPDC), Spokane. WA, July
1993, pp, 272-280.
-, “Partial order transport service for multimedia applications:
Unreliable channels,” in Proc 3rd hit. Networking Con$ (INET), BFA
1-10, San Francisco, CA, Aug 1993.
D. Anderson and G. Homsy, “A continuous media VO server and its
synchronization mechanism,” r‘EEE Comput., vol. 24, pp. 5 1-57, Oct
1991.
M. Ahuja, “FLUSH primitives for asynchronous dist’d systems,’’ Injbrm.
Processing Lett., vol. 34. no. I , pp. 5-12, Feb. 1990.
P. D. Amer and D. H. New, “Protocol visualization in Estelle,” Comput.
Networks and lSDN Syst., vol. 25, no. 7, pp. 741-760, Feb. 1993.
G. Andrew, The Theory of Partitions. Reading, MA: Addison-Wesley,
1976.
M. D. Atkinson, “The complexity of orders,” in NATO Advanred Study
lnst on Algorithms and Order. IKluwer-Academic. 1989, pp. 195-230.
S. Budkowski and P. Dembinski, “An intra to Estelle: A specification
language for distributed systems,” Comput. Networks and ISDN Syst.,
vol 14, no. I , pp, 3-23, 1987.
G. Brightwell and P. Winkler, “Counting linear extensions is #P-
complete,” in Proc 23rd ACM Symp. Theory of Comput., pp, 175-181,
1991.
T. Connolly, P. D. Amer, and P. Conrad, “An extension to TCP: Partial
order service,” (RFC submitted for distribution).
P. Conrad. P. D. Amer, and T. Connolly, “Improving performance in
transport layer communication!; protocols by using partial orders and
partial reliability,” (submitted for publication).
H. W. Chang, “Linear extensions of partially ordered sets,” Tech. Rep.
MS Thesis, Carleton Univ., 1986.
T. Camp, P. Keams, and M. Ahuja, “Proof rules for FLUSH channels,”
IEEE Trans. Software Eng., vol. SE-19, pp. 366378, Apr. 1993.
M. Diaz and P. Senac, ‘Time stream petri nets: a model for multimedia
streams synchronization,” in Proc. Multimedia Modeling ’9.3, Singapore,

A. C. Guyton, Textbook of Medical Physiology. Philadelphia, PA:
Saunders, 198 I .
S. L. Hardt-Komacki and L. .4. Ness, “Optimization model for the
delivery of interactive multimedia documents,” in Proc. GLUBECOM
91, Phoenix. AZ, Dec. 1991, pp. 669-673.
Information Processing S y s t e m s a p e n System Interconnection, I S 0
International Standard 9074: Estelle - A Formal Description Technique
Based on an Extended State Transition Model.
D. Knuth. The Art of Compurer Programming Vol I : Fundamental
Algorithms, 2nd ed..
L. Laniport, “Time, clocks and the ordering of events in a dist’d system,”
CACM, vol. 21, no. 7, pp. 558--565, July 1978.
B. Lampson, N. Lynch, and J. Sogaard-Andersen, “Correctness of
at-most-once message delivery protocols,” in Formal Description Tech-
niques, VI R. Tenney, P. Amer, and U. Uyar, Eds. Amsterdam, The
Netherlands: North Holland, 1994.
T. Little and A. Ghafoor, “Network considerations for dist’d multimedia
object composition and commiunication,” IEEE Network Mag., pp.
32-49, Nov 1990.
-, “Synchronization and slorage models for multimedia objects,”
IEEE J. Select. Areas Commun., vol. 8, pp. 413-427, Apr. 1990.
G. Neiger and S. Toueg, “Substituting for real-time and common knowl-
edge i n asynchronous dist’d systems,” in Proc. 4th Symp. Principles of
Distrih. Comput., 1987, pp. 281-293.
L. Peterson, N. Buchholz, and R. Schlighting, “Preserving and us-
ing context information in inleiprocess communication,” ACM Trans.
Comput. Syt. , vol. 7, no. 3, pp. 217-246, Aug. 1989.
I. Rival, NATO Advanced Study Inst on Algorithms and Order. New
York: Kluwer Academic, 1989.
K. Shafer and M. Ahuja, “Process channel(agent) process model of
asynchronous dist’d communication,” in Proc. ICDCS 12, Yokohama,
Japan, June 1992, pp. 6 1 1 .
R. Sijelmassi and B. Strausser, “‘The PET and DINGO tools for deriving
dist’d implementations from Estelle,” Compul. Networks and ISDN Syst.,
vol. 25, no. 7, pp. 841-852, Feib. 1993.

NOV 1993, pp. 257-274.

Reading, MA: Addison-Wesley, 1973.

Paul D. Amer (A’92), received the B.S. degree
summa cum laude in mathematics from the State
University of New York at Albany in 1974, and the
M.S. and Ph.D. degrees in computer and information
science from The Ohio State University in 1976 and
1979, respectively.

Since 1979, he has been with the University
of Delaware where currently he is professor of
computer science. From 1978 to 1987, he was
employed permanent part-time in Washington, DC,
as a Research Computer Scientist at the National

Bureau of Standards. In 1985-1986, he was at the Agence de I’lnforniatique
in Paris contributing to the development of Estelle, now IS0 International
Standard 9074. In 1992-1993, he was at the Laboratoire d’htomatique et
d’Analyse des Systemes (LAAS) of the Centre National de la Recherche
Scientifique (CNRS) in Toulouse, France working on a partial order transport
service. His current research interests are: protocols for high speed networks,
formal specifications of IS0 protocols and services; protocol visualization
of specifications; automatic protocol test case generation: and extensions to
Estelle.

Dr. Amer is on the Editorial Boards of Coniputer Nehvorks and ISUN
Systems and Reseaux et Inj?”tique Repartie. He has also been a member
of the ACM since 1976.

A‘

8

Christophe Chassot received the Diplome
d’tngenieur and DEA in Computer Science from
the ENSEEIHT of Toulouse in 1992.

Currently he is working at LAAS (Laboratoire
d’Analyse et d’ Architecture des Systemes du
CNRS, Toulouse) on the Ph.D. degree in computer
science from the Irstitut National Polytechnique
de Toulouse. His main fields of interest include
multimedia transport service and protocol formal
specification.

Thomas J. Connolly (S’86) received the B.S. de-
gree in electrical engineering from the University of
Notre Dame, South Bend, IN, in 1987, and thc M.S.
degree in computer engineering from Villanova Uni-
versity, Villanova, PA, in 1990. He is currently a
candidate for the Ph.D. degree in computer science
at the University of Delaware.

Since 1987 he has been involved with computer
and network design. His current research interests
include the design and analysis of protocols for
distributed systems.

Mr. Connolly is has been a member of the ACM since 1992

Michel Diaz (SM’92) received the Doctorat e\
Sciences in 1969 from the Univervty of Toulouse
He IS a Directeur de Recherche at the Centre Na-
tional de la Recherche Scientifique (CNRS) and
leads the Research Group “Communication5 Soft-
wares and Tools” at Labomtoire d’ Automatique et
d’Analyse des Syqtemes du C N R S , Toulou\e. He
has been working on the development of formal
methodologies, techniques and tools for designing
distnbuted systems during the la\t ten year? From
1984 to 1988, he was manager of the SEDOS project

(Software Environments for the Design of Open distnbuted Systems, in which
the Formal Techniques Estelle and LOTOS have been developed) within the
ESPRIT program of the ECC In 1989-1990, he spent a year a5 a vivting staff
at the Universitie\ of Delawdre and California at Berkeley

456

Dr. Diar is a member of many program committees, he served as a
Program Chairman for the IFIP Conference on “Protocol Specification, Testing
and Verification,” the European Workshop on “Application and Theory of
Petri nets,” and the International Conference on Distributed Computing
Systems, in Area “Software Engineering,” the IHP conference on Formal
Description Techniques. He a Technical Editor for Reseaux er Informatique
Repanie, Annales des Telecommunications and Communications Magazine.
He has written one book and more than 100 technical publications. He is
the editor of the North Holland volume on Protocol Specification, Testing
and Verification, 1985, co-editor of two North Holland volumes dedicated
respectively to the Formal Description Techniques Estelle and LOTOS, 1990,
and co-editor of the North Holland volume on Formal Description Techniques,
1992. He is presently Director of the French Research Coordination Group
on “Parallelism, Networks and Systems” (GDR Parallelisme, Reseaux et
Systemes) and the co-head of the French CNET-CNRS collaborative project
CESAME on the formal design of high speed multimedia cooperative systems.

IEEUACM TRANSACTIONS ON NETWORKING, VOL. 2, NO 5, OCTOBER 1994

Phillip Conrad (S’94) received the B.S. degree
in computer science from West Virginia Wesleyan
College, and the M.S. degree in computer science
from West Virginia University. He is currently
working towards the Ph.D. degree in computer
science at the University of Delaware.

His research interests include networking
and algorithms. His email address is: pcon-
rad@cis.udel.edu.

Mr. Conrad has been a member of the ACM
since 1992.

mailto:rad@cis.udel.edu

