
440 IEEUACM TRANSACTIONS ON NETWORKING. VOL. 2, NO. 5 .  OCTOBER 1994 

Partial-Order Transport Service for 
Multimedia and Other Applications 
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Michel Diaz, Senior Member, IEEE, and Phillip Conrad, Student Member, IEEE 

Abstract- This paper investigates a partial-order connection 
(POC) service/protocol. Unlike classic transport services that 
deliver objects either in the exact order transmitted or according 
to no particular order, POC provides a partial-order service; that 
is, a service that requires some, but not all objects to be received 
in the order transmitted. Two versions of POC are proposed: 
reliable, which requires that all transmitted objects are eventually 
delivered, and unreliable, which permits the service to lose a sub- 
set of the objects. In the unreliable version, objects are more finely 
categorized into one of three reliability classes depending on their 
temporal value. Two metrics based on e ,  ( P ) ,  the number of lihear 
extensions of partial-order P in the presence of i lost objects, 
are proposed as complexity measures of different combinations 
of partial order and reliability. Formulae for calculating e L  ( P )  
are derived when P is series-parallel. A formal specification of a 
POC protocol, written in Estelle, is presented and discussed. This 
specification was designed and validated using formal description 
tools and will provide a basis for future implementations. 

I. INTRODUCTION AND MOTIVATION 
URRENT applications that need to communicate objects C (i.e., images, files, sound bites) choose between classic 

transport services that provide either an ordered service (e.g., 
TCP) or one that does not guarantee any ordering (e.g., UDP). 
Many applications, however, such as multimedia only require 
partial-order delivery; some objects being communicated must 
amve in the order transmitted, some may arrive in any order. 
By currently using an ordered service, these applications waste 
both memory and bandwidth resources and at the same time 
risk incurring greater delays. 

Multimedia traffic often is characterized either by periodic, 
synchronized parallel streams of continuous bit rate (CBR) 
information (e.g., combined audio-video), or by structured 
image streams (e.g., displays of multiple overlapping and 
nonoverlapping windows). Currently these applications must 
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use and pay for an ordered service even though they do not 
need it. Because a partial-order service has greater flexibility in 
delivering objects to a user, such a service will reduce delays 
in object delivery, and require less memory and/or bandwidth 
on the average than would an ordered one. This will be the 
case when the underlying service is inherently unreliable as 
in the Internet packet switched network. In today’s age of 
megabyte objects, avoiding the need to buffer or retransmit 
even one object can result in significant savings. 

Two variations of a partial-order service are proposed: 
reliable partial-order service (R-PO) which guarantees the 
eventual delivery of all transmitted objects according to a de- 
fined partial-order, and unreliable partial-order (U-PO) service 
which makes a best effort to deliver all transmitted objects, but 
tolerates a well defined level of lost objects. In addition to in- 
troducing partial-order services/protocols, this article considers 
quantifying, comparing and formally specifying each version. 

Additionally, this article investigates metrics that charac- 
terize (i.e., quantify) the work that must be performed to 
provide a particular R-PO (U-PO) service, and how this metric 
is computed for a given partial-order. Such a metric would 
permit one to compare two or more R-POs (U-POs) thereby 
distinguishing between different quality of service levels and 
providing a clearer means, say, for charging for each service. 

Also, a U-PO service allows a destination to presume 
certain, but not all objects to be lost when their temporal 
value has expired. This article considers: how one classifies 
objects according to their varying temporal constraints; how 
a destination dynamically decides when objects are lost; and 
what are the effects of such a decision. 

These issues are considered as follows. Section I1 introduces 
and motivates R-PO and U-PO service in detail. Section I11 
proposes two metrics based on a partial order’s set of linear 
extensions for quantifying and comparing the complexity of 
different R-PO and U-PO services. Formulae for calculating 
these metrics are derived for the subset of partial orders that 
are series-parallel, a form often appropriate for characterizing 
multimedia applications. In Section IV and Appendix A, a 
partial-order connection (POC) protocol for providing either 
R-PO or U-PO service for any partial order is specified in 
the IS0 formal description technique, Estelle. Also several 
practical issues of concern in implementing POC in the future 
are considered. Finally, Section V provides conclusions and 
directions for future research. 
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Fig. 1. Anatomy and physiology instructor workstation instance (Example 1) 

- 
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Fig. 2. Analogous partial order (Example 1). 

II. PARTIAL-ORDER SERVICE 

Partial-order services are needed and can be employed as 
soon as a complete ordering is not mandatory. When two 
objects can be delivered to a transport service user in either 
order, there is no need to use an ordered service that delays 
delivery of the second one transmitted until the first arrives. 
Four illustrating examples are presented. 

Example I :  Consider an Anatomy and Physiology Insmc- 
tor system described as “a simple multimedia application 
example based on the hypermedia paradigm and temporal 
relation specification [22].” Here a workstation displays mul- 
tiple windows of video, audio, text, image, and animated 
image according to well defined synchronization and ordering 
requirements. In one particular presentation, the user learns of 
the human heart by combining an animated image and sound 
track of a heart pumping in one window while simultaneously 
providing general textual information (e.g., average heart rate) 
in another window (see Fig. 1 taken from [15].) 

Fig. 1 adapted from [22] illustrates the partial order that 
models the heart presentation. Views 1 and 2 of the heart are 
fixed images that change with time to provide a gradual rota- 
tion or slow-motion animation. These images are represented 
by objects 1-12 displayed in a sequence of six pairs. There 

are two text objects and two single image objects shown in 
the four windows on the right. These are single independent 
objects (16-19). The full motion video and sound track are 
represented here as single objects preceded by a null object 
used for synchronization purposes (13- 15). 

The six pairs of images of the slow motion animation have 
an inherent order, but there is no order constraint on the 
delivery within each pair. Similarly the arrival ordering of all 
twelve images is independent on the ordering of the four single 
objects. That is, the arrival of some objects is only partially 
dependent on all of the others. 

Note that a partial-order service focuses primarily on deliv- 
ery order. The temporal value of objects is taken into consid- 
eration when the service allows some level of permitted loss 
(Section IV-B). It is assumed that synchronization concerns in 
presenting the objects after delivery is a service provided on 
top of the proposed partial-order service. Temporal ordering 
for synchronized playback is considered, for example, in [ 3 ] ,  
[161. 

Example 2: Consider an application that must do a screen 
refresh on a workstation screen/display containing multiple 
windows. In refreshing the screen from a remote source, 
objects (icons, still or video images) that overlap one another 
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Fig. 3. Ordered versus partial ordered versus unordered service (Example 2). 

Fig. 4. Television news broadcast for the hearing impaired (Example 3). 

have a “series” relationship and should be delivered to the 
display for refreshing from bottom to top for optimal redis- 
play efficiency. However, objects that do not overlap have 
a “parallel” relationship and may be refreshed in any order. 
Therefore, the way in which the windows overlap induces a 
partial order. 

Consider the four cases in Fig. 3(a) sender wishes to refresh 
a remote display that contains four active windows (objects) 
named { 1 2 3 4) .  Assume the windows are transmitted 
in numerical order and the receiving application refreshes 
windows as soon as the transport service delivers them. If the 
windows are configured as in Fig. 3(a), an ordered service, 
also referred to as a FIFO channel, is required. In this case, 
only one ordering is permitted at the destination. If window 
2 is received before window 1, the transport service cannot 
deliver it or an incorrect image will be displayed. 

At the other extreme, if the windows are configured as in 
Fig. 3(d), an unordered service would suffice. Here any of 4! 
= 24 delivery orderings would satisfy the application since the 
four windows can be refreshed in any order. As notation, four 
ordered objects are written 1;2;3;4 and unordered objects are 
written using a parallel operator: 1 11 2 (1 3 I (  4. 

I ‘ I  

Fig. 3(b) and (c) demonstrate two (of many) window config- 
urations that call for a partial-order delivery service. In these 
cases, two and six orderings, respectively, are permitted at the 
destination. 

Example 3: Sending a set of objects in a partial order need 
not be a one time event as in the previous two examples. 
In cases of periodic (i.e., cyclic) communication such as a 
multimedia presentation with synchronized video, sound and 
text streams, a partial order models each of a repeating pattern 
of objects. In this case, each repetition or period represents a 
single partial-order snapshot in a stream of sequential periods 
of communication. This example and the one that follows both 
illustrate periodic communications. 

Consider a television news broadcast for the hearing im- 
paired as shown in Fig. 4. This multimedia broadcast includes 
two video components (normal broadcast and sign language 
broadcast), two audio components (left and right channels), 
and one text component (the subtitle). Assume the five compo- 
nents have differing characteristics so that in each second there 
are 30 images/s for the main video component, 10 images/s for 
the hand signing, 60 sound fragmentsk for each audio channel, 
and one subtitle text object per second consisting of either 1) 
new text, 2) a command to repeat the previous second’s text, 
or 3) a command for no text. These 161 objects are repeated 
each and every second for the entire news transmission. 

Fig. 5’s partial-order models the delivery the characteristics 
of the multimedia presentation. Objects connected by a hori- 
zontal line must be received in left to right order, while those in 
parallel have no inherent ordering requirement. While objects 
within each of the given five streams must be received in order, 
there exists flexibility in delivering objects in different streams. 

Example 4: This final example illustrates how performance 
can be improved with a partial-order service. Improvements 
are expected in several areas including: memory utilization, 
delay, throughput, and bandwidth utilization. The following 
hypothetical example highlights these gains. The values and 
calculations below are not intended to be a rigorous analysis; 
their purpose is simply to provide a more concrete illustration 
of the potential savings. 

Hypothesis: Assume an ATM network running on a 150 
Mbps channel. Assume that 44 of the 53 octet cells are 
available for user data thus resulting in an actual available 
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Right Audio : 60 fragsec 
Left Audio : 60 fraglsec 
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Closed Caption : 10 imagedsec 

Subtitle : 1 commandsec 

Fig. 5. Analogous partial order (Example 3). 
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Fig. 6. Hypothetical multimedia example for performance analysis (Example 4). 

bandwidth of roughly 125 Mbps. The following table sum- 
marizes the size and transmission time of different objects: 

object type size (octets) transmission time (ms) 
animated image (ai) 50,000 3.200 

subtitle 500 0.032 
fixed image 30,000 1.920 

sound fragment 320 0.020 

Assume a roundtrip time (including delays at intermediate 
packet switches) of 200 ms and a multimedia application 
using the ATM network to remotely present two animated 
image sequences, both with sound and one with an ongoing 
subtitle; and one presentation with fixed images. These three 
presentations are spatially and temporally independent. A two- 
second period representing the repeating partial-order service 
needed is shown in Fig. 6. 

Assume the sender sends objects in numerical order and 
only object 1 is lost or damaged by the underlying network 
service. At the receiver depending on its receive window 
size, a classic ordered transport protocol will buffer or reject 
arriving objects 2 through k where k is the last object received 
before a retransmission of object 1 arrives. To the contrary, a 
partial-order transport receiver will accept and immediately 
deliver objects 2 through k to the user since their delivery is 
independent of object 1 .  No buffering is required. 

Suppose the strategy is to buffer the out-of-sequence objects 
and to use selective positive acknowledgments with a sending 
retransmission timer value of 250 ms. 

Case I) No Flow Control: Before the 250 ms timeout, the 
sender will send objects 2 through 119 (taking into account the 
transmission time of each object), that is, 2 subtitles, 38 sound 
fragments and 78 animated images. For an ordered service, the 
needed buffer space for these objects will be 3.7 Mbytes. For 
a partial-ordered service, no buffers are needed. Additionally, 
the average end-to-end delay for objects 1-119 will be 231.1 
ms for an ordered service while only 104.2 ms when a partial 
order is used. In this scenario, the advantage of a partial order 
is clear. 

Case 2 )  with Flow Control: Assuming real-time replay of 
the information at the receiver, one may assume that the 
transmission of any animated image stream will be throt- 
tled to an approximate rate of 25 imagesh or 1 every 40 
ms. In this case, the sender will output a maximum of 7 
images in each image stream before retransmitting object 1 .  
That is, only objects 1-24 will be outstanding. Just prior to 
receiving the retransmission of object 1, a classic ordered 
transport protocol receiver will need to buffer 687 Kbytes, 
again an amount of memory not needed with a partial- 
order service. Similarly for objects 1-24, the average delay 
will be 238.4 ms versus only 112.4 ms for the partial-order 
service. 

This example, while contrived, is meant to demonstrate that 
the potential quantitative gains in using a partial order are 
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nontrivial. More detailed studies of actual expected gains are 
in progress and will be discussed further later on. 

In summary, these four examples illustrate the usefulness 
of a partial-order service. They also illustrate that the partial 
order is dependent on the application and may be specified at 
different levels. Compare the partial order used in Example 1 
where an entire video sequence is a single object to the cases 
in Examples 3 and 4 where individual video frames are single 
objects. The efficiency gained with a partial-order service will 
depend on how an application designer chooses an appropriate 
structure and granularity for the partial order. 

A. Reliability Versus Order 

While the most common transport protocols (e.g., TCP) 
work hard to avoid the loss of even a single object, most 
multimedia applications have a genuine ability to tolerate 
loss. Losing one frame per second in a thirty frame per 
second video, or losing a segment of its accompanying audio 
channel, is usually not a problem. Bearing this in mind, the 
proposed partial-order transport service combines partial order 
with varying levels of loss that can be tolerated. Different loss 
levels provide different levels of partial reliability, 

Traditionally there exist four transport services: reliable- 
ordered, reliable-unordered, unreliable-ordered, and 
unreliable-unordered (see Fig. 7). Reliable-ordered service is 
denoted by a single point where all objects are delivered in the 
order transmitted. Traditional file transfer is an example appli- 
cation requiring such a service. Reliable-unordered is a single 
point where all objects must be delivered, but not necessarily 
according to the order transmitted. Transaction processing 
such as credit card verifications requires such a service. 

Unreliable-ordered service allows some objects to be lost; 
those that are delivered, however, must arrive in relative 
order’. Since there are varying degrees of unreliability, this ser- 
vice is represented by a set of points in Fig. 5.  An unreliable- 
ordered service is applicable to packet-voice or teleconferenc- 
ing applications. If duplicates are not permitted, this represents 
what some, but not all authors call “at-most-once” delivery 
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service [20]. 
Finally unreliable-unordered service allows objects to be 

lost and delivered in any order. This is the kind of service 
used for normal email (without acknowledgment receipts) and 
electronic announcements or junk email. 

The concept of a partial order expands the order dimension 
from the two extremes of ordered and unordered to a range of 
discrete possibilities. R-PO service, for example, is appropriate 
for the screen refresh described earlier in Example 2. U-PO 
service is appropriate for general multimedia applications such 
as the television news broadcast for the hearing impaired in 
Example 3. 

B. Related Work 
Other authors have considered theoretical consequences of 

channel ordering, or lack thereof, in the context of designing 

ordered wid ordered unordered 

Order 

Fig. 7. Quality of Service: reliability versus order. 

and verifying distributed algorithms [19], [23]. For example, 
Ahuja shows that some conclusions derived on the design of 
distributed algorithms need not have required FIFO ordering 
as a base assumption [4]. Ahuja, however, assumes a sending 
process dynamically builds the partial order and that no objects 
are ever lost [13], [26]. Our work assumes a predetermined 
partial order negotiated between the sender and receiver and 
U-PO service allows objects to be lost. Also, Ahuja’s four 
data types do not permit all possible partial orders of objects 
as does Protocol POC. 

Peterson et al. define a partial order on the messages com- 
municated by a set of distributed processes and implements a 
protocol Psync that encodes the partial ordering within each 
message [24]. The partial order is defined by the interleaved 
times that messages are sent and received in the shared 
message space of the multiple communicating processes and 
dynamically changes with each newly sent message. Our work 
differs in its assumption of a point to point connection in which 
both sides agree at any point in time to a partial ordering of 
the data to be transferred. 

111. QUANTIFYING AND COMPARING 
PARTIAL-ORDER SERVICES 

The complexity of a partial-order P can be quantified by its 
set of linear extensions, denoted L( P) .  Each linear extension 
in the set L(P)  is essentially one of the orderings of the objects 
that is permitted at the destination. The number of linear 
extensions of P, denoted e(P) ,  is thought as the best single 
number which measures the complexity of P [28]. Clearly for 
N objects, e(comp1ete order) = 1, e(no order) = N !  

It is argued in [l] that e(P) appropriately quantifies a 
desired partial order transport service in communication net- 
works. Intuitively this metric correlates to the work a protocol 
would have to perform to provide a particular partial-order 
service. This is because the larger the number of permitted 
orderings allowed at the destination, the less overhead is 
expected to provide acceptable object delivery. For example, 
the larger the number of allowable orderings, the smaller the 
expected demand for store Objects 
received out of order as shown in Example 4 in Section 11. 

I An unreliable service (e.g.. common mail delivery by the postal system) 
does not necessarily lose objects, simply it may do so without failing to 
provide its advertised quality of service. 

to 
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Several interesting questions related to linear extensions and 
therefore to a partial order service are now discussed. 

A. Reliable Partial-Order Service 

Given a particular partial order, just how many orderings 
are permitted at the destination if no losses are permitted? 
Answering this question allows one to quantify and compare 
two or more R-PO services. Unfortunately, there is currently 
no known formula for calculating e ( P )  for an arbitrary partial 
order. Recently it has been shown that the problem of comput- 
ing e(P)  is #P-complete2 [9] .  There is an 0 ( N 5 )  algorithm, 
where N is the number of objects, for computing e ( P )  for 
partial orders that form a tree when all edges are considered 
undirected [7]. Similarly, there is an O ( N 8 )  algorithm for 
computing e ( P )  for any graph (and therefore for any partial 
order) where if the directions of the edges of P are not 
considered, any resulting cycles are edge disjoint [ 121. Neither 
of these forms, however, model multimedia applications. 

If the partial orders under consideration are series-parallel 
[28], calculation of e (P)  is possible [l]. While not all appli- 
cations calling for a partial-order service need a series-parallel 
one, such a composition is reasonable for many applications, 
particularly multimedia applications. For instance, the partial 
orders in all of Section 11’s examples are series-parallel. 
(Similarly, the Object Composition Petri-nets proposed by 
Little and Ghafoor as a basis for modeling the synchronization 
and ordering of multimedia entities often are series-parallel 
[211, 1221.1 

Using “;” and ‘‘1)” as notation for series and parallel com- 
position, respectively, the Anatomy and Physiology Instructor 
multimedia presentation of the human heart (Fig. 1) can be 
defined as 

((1 I1 2); (3  II 4); ( 5  II 6); (7 II 8); (9 II 10); (11 II 12)) 

From [28, Example 35.41, the following formulae for series- 
parallel compositions are known. If X I ,  . . . , XI, are k partial 
orders with n1, . . . , nk objects, respectively, then X I ;  . . . ; XI, 

and X I  1 1  . . . 1 1  Xk have N = 
k 

ni objects, and 
2 = 1  

IC 

j = 1  

j=1 

Note that these formulae differ only by a multinomial 
coefficient which accounts for the allowed interleaving in 
parallel composition. 

* #,P-complete is a similar concept to NP-complete, however, it  refers to 
counting problems rather than decision problems. The significance is that it 
is unlikely that polynomial time algorithms exist for #P-complete problems. 

B. Unreliable Partial-Order Services 
Just how much more flexible is a partial order with partial 

reliability (i.e., loss is permitted)? Suppose a destination 
application not only permits objects to arrive in a partial order, 
but that it also tolerates an occasional missing object. Let 
e;(P) denote the number of linear extensions permitted by 
a partial-order P that tolerates the loss of exactly i objects 
where eo(P) represents what previously was denoted e(P) .  
This section provides formulae for e i (P)  analogous to those 
in the previous section whenever P is series-parallel. 

If a receiving application can tolerate the loss of some 
objects, then the destination partial-order service conceivably 
could more flexibly deliver those objects that arrive out of 
order from the network (even in terms of a defined partial 
order) by simply assuming certain expected ones were lost. 
The amount of added flexibility when i objects can be lost 
can be quantified by considering all possible variations of each 
valid ordering of N objects with up to and including i of them 
missing. For example, the partial order in Fig. 3(b) permits two 
linear extensions: (1 2 3 4) and (1  3 2 4). If the loss of any 
single object is tolerated, then the number of delivery orders 
that the destination could accept increases to eight: ( I  2 3 4), 
(1  3 2 4) and (1  2 3), (1  2 4), (1 3 2), (1 3 4), (2 3 4), (3 2 4). 

More precisely, if partial-order X has a single object, then 
eo(X)  = e l ( X )  = 1 and V;>z[e i (X)  = 01. (One cannot lose 
two or more objects from a partial order that only has one 
object.) If partial-orders X I  and X Z  are combined in series and 
i objects can be lost, the resulting number of linear extensions 
is: 

e i ( ~ 1 ; ~ 2 )  = e j ( x l>e i - j ( x z ) .  (1) 
j = O  

Equation (1) sums all combinations of losing i and 0 objects 
from partial-orders X1 and X Z ,  respectively; plus losing i - 1 
and 1 objects from X I  and X2, respectively; ..., plus losing 
0 and i objects from partial-orders X1 and X2, respectively. 
Analogously 

(2) 
where by definition i! = 1 for i 5 1. 

The number of terms in a general formula for e , ( X ) ,  where 
X is a composition (either series or parallel) of IC > 2 partial 
orders, can be based on the number of compositions of i .  
Compositions3 of i are expressions of i as a sum of positive 
integers with regard to order [614. For instance, there are 8 
compositions of the integer 4: (1 + 1 + 1 + l) ,  (2+ 1 + l ) ,  (1 + 
2+1), (1+1+2)! (2+2),  (3+1),  (1+3) and (4). Reference [2] 
presents a general formula of e; ( X )  based on the partitions of 
i; this formula is simplified here by considering compositions. 
The overall number of terms in the formula increases, but each 

3Unfortunately, the term composition has two meanings. To minimize 
confusion, “composition” is used to refer to the combining either in series 
or in parallel of two or more partial orders. ”Composirion” (in italics) will 
refer to the mathematical concept of a set of integers summing to an integer 
a.  

4Partitions of z do not take order into account. 
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one is simpler to represent. Thus by using compositions, the 
general formula is more readable. 

Intuitively, when composing k partial orders, either in series 
or in parallel, with i losses, it is possible to have 1 loss in each 

,=1  i l=l  ;r=;l+l 
( J # ~ I ) A ( J # ~ ~ )  

of i partial orders and none in the others; or 2 losses in a single 
partial order, 1 loss in each of i - 2 partial orders and none in 
the others; or 2 losses in each of 2 partial orders, 1 loss in each 
of i -4 partial orders and none in the others; ...; or i losses in 1 
partial order and none in the others. If the ranges of summation 
variables are properly defined, all of the linear extensions that 
result from all of these composition possibilities are mutually 
exclusive. Thus in a general formula, there will be one term 
in the calculation of e,(X) for each composition of i. Each 
term itself must consider all possible combinations of partial 
orders in which the losses occur, thus resulting in multiple 
summations over all partial orders. 

When partial orders are combined in series, one computes 
the product of the number of linear extensions of each partial 
order [with or without its permitted loss(es)] to compute 
the total number of possible ways the extensions can be 
combined. If the partial orders are combined in parallel, then 
one also must consider all possible interleavings of a single 
linear extension from each one. This results in an additional 
multinomial coefficient hereafter denoted Pz,3 (coefficient for 
the j t h  composition of i losses). 

If X I , .  . . , Xk are k partial orders with 7 1 1 , .  . . , nk objects, 
respectively, then X~;...;,YI, and X I  1 1  . . .  1 )  Xk have 

N = nJ objects, and the formulae for e l ,  e 2 .  and e 3  are 

as follows. A single formula is presented for composition 
either in series or in parallel. For series compositions, all P z , J  

coefficients = 1;  for parallel compositions, each PZ,? coefficient 

k 

3=1 

if (k 2 2) 

where 
( N  - 2)! 

p 2 , z  = k 

(nzl - l)!(ni2 - l)! J-J (n7!) 
,=1 

(3#zl)A(J#zz) 

The two terms for e2 in (4) respectively represent all 
combinations of 2 losses from 1 partial order and none from 
the others; and 1 loss from each of 2 partial orders and none 
from the others. In the second term, subscript i 2  takes on only 
those values greater than subscript 21. This is to avoid counting 
twice the case of a single loss in each of X, ,  and X r 2 .  

where ( N  - 3)! 
p 3 . 1  = b ( 5 )  

if (IC 2 2) 

where is given. 

( N  - 3)!  Several specific formulae are given in (3), (4), and (5) prior 

k to the general formula for ea in (6) to provide an intuition into p 3 . 2  = 
tlle structure and complexity of the general formula. 

(722, - 2)!(nrz - I)! n (nl!) 
,= l  

(3#zl )A(3#22) 
k 

el = k 1 , 1  e l ( X z ) n e o ( x , )  

+ 2 ( p 3 , 3  e1(xzi)e2(xt , )  i e O ( X 3 )  
r = l  ,=1 

3 # a  

z l = l z z = a l + l  ,=1 

where PlJ = - (3) ( ~ # z i ) A ( ~ # z 2 )  
(N - l)! 

k 
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15 
16 
17 
ia 
19 

441 

3,876 35,268 93;024 6559 9152 
5,814 6559 93d6 
342 6559 9657 
19 6559 10000 

969 3,414 
171 280 

1 1 
19 19 - 1 -  

where TABLE I 
STATISTICS FOR PARTIAL ORDER IN FIG. 2 

These formulae can be generalized by a single formula. Let 

where #Comp( i )  = the number of compositions of i, and 
Term;,t is defined below. Each term for a series composition 
assumes the coefficient Pi,t = 1. For parallel compositions, 
the values are given. 

Termi,t  is based on the tth composition of i and is 
calculated as follows. Let the tth composition consist of b 

integers denoted X j  = i. For 

example, one composition of the integer 21 is X = (8 + 4 + 
4 + 2 + 2 +  1). 

Each Term;,t  has b summations where b partial orders 
“contribute” the lost objects and k - b partial orders contribute 
no loss. 

b 

= { A l , .  . . , Ab}. That is, 
j=l 

k-b+l k-b+2 k-b+3 k-1 k 

if(k 2 6) (6) 

where 

( N  - i)! 
k. n 

For an ordered or unordered service with N objects, ei 
reduces to C:-i(= -) N !  and P$-z(= T), respectively, 
where C and P represent combinations and permutations. 

From a computational point of view, computing ei for a 
partial order composed of multiple smaller partial orders is 
simplified by composing them two at a time and repeatedly 
using the formulae (1) and (2). The computational complexity 
of computing ei is discussed further in [l  I]. 

- 
t - 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 

75,582 4;912;613;408 
92*378 1,516,456,832 

339,093,456 ;i:zg 1 83,725,608 1 
50,3bb 15,226,920 
27,132 2.355.648 
11.628 I 3111452 I 

Unordsrsd(Pz-’) 
121,645,100,408,831,000 
121 , ~ ~ ~ , ~ o o , ~ o ~ , ~ ~ , o o o  
6o,aa~,~~0.~04,~i6,000 
20.274.183.401.472.000 

3;016;991;577~600 
335,221,286,400 
33,592,126,640 

253,955,520 
19,635,040 
1.395.360 

3,047,466,240 

,6016 
,6233 
,6376 
,6466 
,6517 

,6554 
,6558 
,6559 
,6559 
,6559 
,6559 
,6559 
,6559 

- 
m, - 

5697 
6069 
6373 
6642 
6891 
7124 
7347 
7560 
7766 
7966 
6161 
8354 
6546 
8740 
6940 

C. Comparing Partial-Order Services 
Using arbitrary precision arithmetic routines, programs were 

developed to compute ei values for an arbitrary series-parallel 
partial order. Table I indicates e; values for 0 5 i < N for 
the Anatomy and Physiology Instructor example in Fig. 2. 

Additionally, the corresponding number of linear extensions 
for an ordered and unordered service are tabulated. For exam- 
ple, if no losses are permitted, there are 5,417,717,760 valid 
orderings (i.e., linear extensions) out of the total possible 19! 
(=121,645,100,408,832,000) orderings, a fraction of 4.453 * 
10-8. 

On comparing over five billion valid orderings in a partial- 
order service with just one valid ordering in an ordered service, 
the partial order seems quite flexible, yet a fraction on the 
order of lo-’ hardly seems to reflect this. The significance 
is visualized more easily by considering the number of valid 
orderings on a normalized logarithmic scale. Therefore the 
following normalized partial-order metrics in the interval [0,1] 
are proposed where 0 represents reliable ordered service, 
values from 0 to 1 represent increasingly more flexible partial 
reliable, partial-order services, and 1 represents unreliable 
unordered service. For partial-order X containing N objects 
and considering a service with i losses: 

j = O  M ; ( X ) =  f o r  O F i < N  

j = O  

The metric m i ( X )  represents a relative comparison between 
the number of permitted extensions of a partial order and an 
unordered service for N objects and exactly i losses. The 
metric M ; ( X )  represents a similar relative comparison, but for 
i or fewer losses. The m; and Mi values for the multimedia 
example in Fig. 2 also are tabulated in Table I. 

These metrics provide better insight into this partial order’s 
flexibility than do the e; values. The metrics m; and M; 
allow one to quantify and compare partial orders with respect 
to communication constraints independent of N .  Consider, 
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Fig. 8. 111,  (+) and *U, (0) versus values for partial order in Fig. 2. 

constraint, the number of linear extensions is 6,273,146,880; 
less than 15% of the general e2 value of 49,662,412,800. 

IV. ESTELLE PROTOCOL SPECIFICATION 
While calculating e i ( P )  is useful for evaluating and com- 

paring partial orders, it remains a practical problem for a 
destination to determine as objects arrive if they are in one 
of the valid orders as defined by P. That is, is the amving 
order a member of L(P)? If not, arriving objects must be 
buffered to guarantee the particular partial order in agreement 
at the time. 

Enumerating L ( P )  is equivalent to finding all possible 
topological sortings for a given partial order [ 181. Fortunately 
in practice, a destination need not enumerate L ( P )  to decide 
if an arriving object can be delivered. The destination merely 
needs to see if the arriving object satisfies the defined partial 

This example leads to the conjecture that as the number 
of tolerated losses increases, U-PO service never decreases in 
flexibility relative to an unordered service that tolerates the 
same number of losses. That is. both mi(X)  and M i ( X )  are 
nondecreasing functions of ,i; 

If this conjecture were not true, then in some cases, one would 
be increasingly more motivated to use an ordered service for an 
application having only partial-order constraints as toleration 
for loss increased. This seems counterintuitive. 

Similarly, study of m, and M, demonstrates that for i # 

(and analogously for MI) .  Merely because partial-order A is 
more flexible than partial-order B when i (or fewer) losses can 
be tolerated, A may be less flexible than B when j > i (or 
fewer) losses can be tolerated (contrary to the authors’ initial 
intuition). 

The above formulae for e,  assume that all objects are 
equivalent from the viewpoint of loss. In some applications, 
however, this may not be true (see Section IV-Bj. For exam- 
ple, in Fig. 2, perhaps one could tolerate the loss of any single 
pair of associated parallel ob-jects in 1 through 12 [i.e., (1,2) or 
(3,4j or ... or (11,12j], but not any single or any random two 
of the nineteen objects. The previous formula for calculating 
e2 allows any two objects to be lost and thus overestimates 
the number of valid linear extensions with this constraint. 

One can take into account such restrictions when computing 
any e,  value. In this example, one can recompute the e2 value 
for just the partial order consisting of objects 1-12, and define 
e2 = 0 for the other five parallel composed partial orders 
(objects 13-19). Additionally, this constraint implies el = 0 for 
all six parallelly composed partial orders. With this particular 

j ,m,(X1) < m,(X2) does not imply m , ( X 1 )  i m,(X2) 

A. Protocol POC 

Our protocol, entitled Partial-Order-Connection (POC) dy- 
namically updates its information each time an object amves. 
It is specified in the language Estelle (see Appendix A), 
an IS0 Intemational Standard Formal Description Technique 
for specifying communication services/protocols and, more 
generally, distributed systems [8], [ 171. The specification has 
been designed and validated using several formal description 
tools: Pet-Dingo, a portable Estelle translator and distributed 
generator for simulations [27]; and GROPE, a simulation sys- 
tem that provides graphical animation to visualize an Estelle 
specification [5]. 

Since it makes no practical sense to put a POC on top of a 
service that is already fully ordered and fully reliable, Protocol 
POC expects that the underlying network service is unreliable. 
It will lose and duplicate objects, and sometimes deliver them 
out of the order transmitted. In all cases (R-PO and U-PO), 
Protocol POC will remove duplicates. 

The sender transmits (possibly repeating periods of) N 
objects using at most NUM-SND-BUFFERS to remember 
unacknowledged objects outstanding at any moment in time. 
The receiver is assumed to have NUM-RCV-BUFFERS with 
which to temporarily store out of order objects. In case of re- 
peating periods, the sender and receiver distinguish identically 
numbered objects from different periods by a period number. 

B. Object Reliability Classes 

In Section 111’s discussion of U-PO service, all objects are 
equal with regards to their reliability. This classification is 
reasonable if all objects are identical (e.g., video frames in 
a 30 frame/s film). Applications that require a partial-order 
service, however, may contain a variety of object types. Thus, 
Protocol POC defines three object reliability classes within a 
U-PO service: BART-NL, BART-L, NBART-L, where it is the 
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application’s responsibility to define which object belongs to 
which class5. While classic transport services generally treat 
all objects equally, the sending and receiving functions of 
Protocol POC behave differently for each class of object. 

BART-NL objects must be delivered to the destination. 
These objects have long temporal value that lasts for an entire 
established connection and require reliable delivery. If all 
objects are of type BART-NL, the service is R-PO service. 
An example of BART-NL objects would be the windows in 
the screen refresh Example 2 of Section 11. To assure eventual 
delivery of a BART-NL object in Protocol POC, the sender 
buffers it, starts a timeout timer, and retransmits it if no ack 
arrives before the timeout. The receiver in turn returns an 
ack when the object has safely arrived and been delivered 
or buffered. 

BART-L objects have temporal value over some intermedi- 
ate amount of time, enough to permit timeout and retrans- 
mission, but not everlasting. Once the temporal value of 
these objects has expired, it is better to presume them lost 
than to delay further the delivery pipeline of information. 
One possibility for deciding when an object’s usefulness 
has expired is to require each object to contain information 
defining its precise temporal value [14]. An example of 
a BART-L object would be a movie subtitle which is to 
be displayed during a twenty second film sequence. If not 
delivered sometime during the first ten seconds, the subtitle 
loses its value and can be presumed lost. In Protocol POC, 
these objects are buffered-acked-retransmitted up to a certain 
point in time and then presumed lost. 

NBART-L objects are those associated with strict real-time 
applications. Their temporal values are too short to bother 
timing out and retransmitting. An example of a NBART-L 
object might be a single packet of speech in a packetized 
phone conversation or one image in a 30 image/s film. In 
Protocol POC, a sender transmits these objects once, and the 
service makes a best effort to deliver them. If the one attempt 
is unsuccessful, no further attempts are made. 

Protocol POC’s general architecture is shown in Appen- 
dix A. A User-Sender (e.g., sending application) supplies 
objects to the POCSender according to the partial order, 
not necessarily in sequence order 1 , 2 , .  . . ,N,1,2, .  . . The 
partial order defines both the possible orders of transmission 
by the sending application and the orders of delivery to 
the receiving application. The POC-Sender buffers and, if 
necessary, retransmits any BART-NL or BART-L objects that 
are not acknowledged within a predefined timeout period. 
The total number of unacknowledged BART-NL and BART-L 
objects never exceeds (NUM-SND-BUFFERS }. 

Each time an object arrives at the receiver, Estelle transition 
Check-Newly-AmvinLObject becomes firable. If the object 
is within the receiver’s window and is not a duplicate, it 
is either immediately delivered to the User-Receiver (e.& 
destination application) or, if not deliverable according to the 
partial order, stored for future delivery. BART-NL and BART- 
L objects are then acked. Out-of-partial-order objects for which 

there is no available buffer space simply are discarded. When- 
ever an object is delivered to the User-Receiver, transition 
Check-Buffers-For-Delivery becomes enabled and checks all 
occupied receive buffers to see if the just delivered object now 
enables the delivery of any stored objects. 

Due to practical page constraints, the Estelle specification 
in Appendix A is abbreviated only to include the architecture 
and data transfer phase. It is assumed that a connection already 
has been established, and that an initial partial order and vector 
defining the reliability class of each of the N objects has been 
negotiated. 

The full data transfer phase allows the POC-Sender and 
POC-Receiver to change the partial order dynamically. Dy- 
namic changes are to be permitted although the POC-Sender 
and POC-Receiver are obligated to complete one partial 
order before beginning another. A sender and receiver may 
not handle multiple different partial orders simultaneously. 
Currently the authors predict any gain in performance would 
be minor and not worth the added complexity needed to permit 
multiple orders. 

Any partial order can be represented in N ( N  - 1)/2 bits 
as an N X N  upper-triangular matrix where N is the number 
of objects in the partial order [ 11. If the partial order is series- 
parallel, it can be represented as the intersection of two total 
orders [29]. By assuming one total order to be I ,  2 , .  . . . N ,  a 
series-parallel partial order can be encoded in N log N bits. 

For a U-PO service with BART-L and NBART-L objects, 
a POC-Receiver can decide at any time that an object is 
presumed lost and then continue delivering objects as if the lost 
one had been delivered. This represents the situation where 
a multimedia application decides that an object has lost its 
temporal value. To decide when to presume an object is lost, 
POC-Receiver includes transition Validate-Temporal-Value 
to regularly check if delivery to the User-Receiver of each 
expected object in the reception window is still worthwhile. 

As soon as an expected BART-L or NBART-L object’s 
temporal value expires as determined by a call to a special 
function Is-Object-Still-Useful, the object is presumed lost. 
Then all currently buffered objects are checked to see if their 
delivery is now enabled. Should an object that was presumed 
lost arrive later, it will be discarded since it is no longer of 
any value, and if type BART-L, it will be acknowledged to 
stop its retransmission by the sender. Thus for this protocol, 
an ack is sent any time a BART-L object is delivered, stored, 
or presumed lost; as a result, it is possible to ack an object 
that has not yet been sent. 

The details of Is-Object-Still-Useful are not defined in 
Appendix A. This function can be intemal to Protocol POC, 
in which case each object is required to contain information 
defining its precise temporal value. Otherwise this function 
must contact the User-Receiver to decide when an object is 
no longer valuable. The latter approach requires coordination 
between the User-Receiver and the POC-Receiver. 

In regards to the metrics discussed in Section 111, when the 
set of presumed losses exceeds a defined limit as determined 
by a function assumed to have been negotiated at connection 
establishment, a message is Sent to the User-Receiver indicat- 
ing the negotiated QOS is not being provided. It is then up 

BART stands for (Buffers, Acks. Retransmissions, Timeouts), four mech- 
anisms employed to obtain reliability. L indicates that loss is permitted; NL 
indicates no loss is allowed. 
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to this user to determine whether or not to continue with the 
partial-order service. 

It is emphasized that while closed-form formulae for com- 
puting m i ( X )  and M , ( X )  exactly are provided only for 
series-parallel partial orders, Protocol POC is applicable for 
any partial order, not only those that are series-parallel. When 
a partial order contains BART-NL objects, the ei values are 
reduced since certain linear extensions with loss are no longer 
permitted. Calculation of ei in this case uses the same formulae 
derived in Section 111 with the single difference that initial 
values el  ( X )  equal 0, not 1, whenever X is a partial order 
representing a single BART-NL object. 

V. CONCLUSION 

This work 1) introduces and motivates a partial order, 
partial reliable transport service/protocol, 2) investigates the 

definition and calculation of metrics for quantifying a partial- 
order service, and 3) provides a formal Estelle specifica- 
tion of a protocol that provides partial-order service. The 
authors currently are simulating Protocol POC using OP- 
NET, a networking simulation system, and implementing 
a partial-order version of TCP based on a submitted RFC 
[IO]. The simulation and empirical studies will evaluate more 
precisely the expected delay/memory/bandwidth performance 
improvements compared to an ordered service for various 
combinations of 1) different partial orders and loss tolerances 
(i.e., different m; and Mi values), 2) different distributions 
of disorder and loss supplied by the underlying service, and 
3) different sender-receiver window sizes. The goal is to 
better understand the potential performance gains when using a 
partial-order service over the full range of unreliable network 
services. 

APPENDIX 

IZSTELLE SPECIFICATION OF PROTOCOL: PARTIAL-ORDER CONNECTION 

const I = ...; E # tsdus in negotiated PO per period 3 
IUH-PARTIAL,ORDER-BITS = (1*(1-1)/2) { # bits to encode partial order > 
~-DAIA-PER-I-OR-T,SDU = ... ; { i n f o  data bytes per nsdu or tsdu 3 
IU¶,BCV-BUFFERS = ...; { 1: of receive buffers 1 
HAX-PEBIOD,PER,RU = ...; { = ceiling((IIRI-RCV-BUFFERS - l)/W + 1 1 

IUX,SID-BUFFERS = ... ; { # of send buffers 3 
SIZE-OF-IEEDS-ACK = ...; { >= 2. m a x  1: periods before needs-ack array cycles 3 

EKFTY = -1; { represents empty/null snd/rcv buffer 1 
ACK-TIHEOUT = . . . ;  { sender’s timeout before retransmissions 3 

HAX,PERIOD~PER~RU~HIIUSl = (HAX-PERIOD-PER-RU - 1) 

SIZE,OF-IEEDS-ACK-HINSl (SIZE-OF HEEDS-ACK - 1) 

CHECK-VALIDITY-IITERVU = . . .  ; { timeout for check if objects in rcv buffers have temp r d n e  1 
type sdu-info-type 

tsdu-type 
nsdu-type = record header: integer; seqnam, period: integer; WO: sdu-info-type; end; 
ident-type 
PO-matrix-type 
partial-order-type 
reliability-type = (IBART-L.BART-II,BART-L); 
partial-reliability-type 
array-1-1-of-boolean-type = array [l. .I] of boolean; 

’ = array [l. .~-DATA-PER-I-ORT-SDU] of integer; 
= record seqnum, period: integer; i n f o :  sdn-info-type; end; 

= record period, saqnam: integer; end; 
= array Cl. .1,1. .#I of 0 .  .1; 
= array [1..IUH~PARTI~~ORDEa~BITS] of integer; 

= array [1..1] of reliability-type; 

channel tsda,channel(nsr.pvd); { connects user/application and partial-order-service 
by usr: t-data-req(tsdu: tsdu-type); 
by pvd: t-data,ind(tsdu: tsdu-type); QOSLoss-failed; po-not-respected(period,seqnam: integer); 

by uar,pvd: n,data-req(nsdn: nsdu-type); n-data-ind(osdu: nsdu-type); 
channel nsdu-channel(usr,pvd); { connects partial-order-service and network 

ackcperiod: integar; seqnum: integer); 



AMER et al.: PARTIAL-ORDER TRANSPORT SERVICE FOR MULTIMEDIA 45 1 

module POC-type activity; ip ucep: tsdu-channel(pvd); lcep: nsdu_channel(ur); end; 
body POC-Sender-Body for POC-Type; 
state active; 
type needs-ack-type = array ~l..~,O..SIZE~OF~IEEDS~ACX~HIRlJSll of boolean; 

v a r  nsdu : nsdu-type; 
snd-buffers-type = array c l  .. lfUH,SID-BUFFERSI of tsdu-type; 

snd-PO-mat rix : PO-matrix-type; 
partial-order : partial-order-type; 
PR-rector : partial-reliability-type; { vector describing partial reliability 
partial-reliability: partial-reliability-type; 
and-used-buffers : integer; { t send buffers currently in use 
snd-buffers : and-buffers-type; { contains sent BART tsdus awaiting ack 
needs-ack : needs-ack-type; { true if tsdn i of per. cj mod SIZE-OF-IEEDS,ACK] awaits ack 
earliest-per : integer; { period represented by firqt column of needs-ack 
snd-curr-per : integer; { period for which tsdu are  being sent; 

num-curr-per-tsdu-sent: integer; num tsdus of current period already sent once 

{ negotiated partial reliability 

f not necessarily 1st period of objects awaiting ack 

procedure FreeSndBuffer(period, seqnum: integer; var snd-buffers: snd-buffers-type; 
var  snd-used-buffers: integer) ; primitive; 

{ find stored tsdu(period,tsdu) and free the buffer 
procedure 

procedure 

Init-PO-Hatrix(iar snd-PO-matrix: PO-matrix-type; partial-order: partial-order-type); primitive; 

Init-PR-Vector(var PR-vector : partial-reliability-type; 
{ initialize upper right triangular snd-PO-matrix with negotiated partial order 

{ initialize PR-rector with negotiated partial-reliability 

1 

partial-reliability: partial-reliability-type); primitive; 
1 

function IsObjactInSndBuffers(period: integer; seqnum: integer): boolean; primitive; 

function IsPORespectad (period: integer; seqnum: integer): boolean; primitive; 
true when given tsdu respects partial order. 

function IsObjectSendable(period: integer; seqnum: integer): boolean; primitive; 
returns true when tsdu(period,seqnud can be sent for the first time 

procedure Store-Sant-tsdu(tsdu: tsdn-type; var snd-buffers: snd-buffers-type; 
iar snd-usad-buffers: integer); primitive; 

{ find an empty buffer in snd-buffers and store tsdn in it 

{ true when tsdu (period,seqnum) is in one of the snd buffers 

procedure Update-aeeds-Ack(var needs-ack: needs-ack-type; var earliest-per: integer; 
period, seqnum: integer) ; primitive; 

{ when ack arrives, update knowledge of outstanding acks 
procedure Updat~-Snd_PO-Hatrix(rar snd-PO-matrix: PO-matrix-type; v i v  num-Curr-per-tSdn-8ent: integer; 

var  snd-curr-per: integer; seqnum: integer); primitive; 
{ each time an object is sent, the dynamic PO matrix has to be updated 

E use info in tsdu to form nsdu 
procedure Prepare-nsducvar nsda: nsdu-type; tsdu: tsdu-type); primitive; 

initialize t o  active 
rar i,j: integer; 
begin 
snd-curr-per : = 1 ; 
num,curr-per-tsdu-sent := 0 ;  
snd-used-buffers :=  0 ;  
for i := 1 to I do for j := 0 t o  SIZE-OF-IEEDS-ACX,nIIUSl do needs,ackCi,j] := true; 
earliest-per := 1; 
for i := 1 to IUH-SIID-BUFFERS do 

begin 
snd-buffers[i] .period := EHPTY; 
snd-buffersci] .seqnum :* W T Y ;  
for j := 1 to IUn-DATA-PER-I-OR-T-SDU do snd~buffers[i].inio~j] := MPTY; 
end ; 

Init-PO-Hatrix(snd-PO~atrix,partial-order); 
Init-PR-Vector(PR-vector,partidl-reliability); 
end ; 

trans 
from active to active 
when ncep.t-data-req(tsdu) 
provided IsObjectSendable(tsdu.period,tsdu.secplam) 

name Data-Request : 
begin 
Update-Snd-PO-Hatrix(snd_POaatrix, nam,curr-per-tadu-sent ,snd,curr-per ,tsdn. seqnum) ; 

{ User-Sender wishes to transmit an object to User-Receiver 

1 

1 
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if (needs-ack[tsdu.seqnnm, tsdu.period mod SIZE,OF-IEEDS-ACK]) then 
begin 
Prepare-nsdu(nsdu,tsdu); E 
output 1cep.n-data-reqCnsdu); { tranamit the object E 
{ buffer all BART objects in case later retransmission is needed E 

else { assert: PR = IBART-L; by def, on sending IBART-L object, no need to wait for ack 

{ nsdu is based upon i n f o  within given tsdu 

if (PR-vectorCtsdu.seqnum1 = BART-L) or (PR,vector~tsdu.seqnuml = BART-EL) then 
Store-Sent-tsdu(tsdu,snd-buffers.snd-used-b~ers) 

Update~Eeeds~Ack(needs~ack,earliest~per.tsdn.period,tsdu.seqn~~; 
> 

end ; 
{ else tsdu has been previously declared lost; it is not sent 
end ; 

1 

from active to active 
when ucep.t-data-req(tsdu) 
provided not(IsPORespected(tsda.period,tsdu.seqnum)) 

User-Sender tries to transmit an object not according to the partial order } 

name Error-in-Data-ReqaeCt: 
begin { user is warned it did not respect the negotiated partial order 
output ucep.po-not-respected(tsdu.period,tsdu.seqnum) 
end ; 

from active to active 
when lcep.ack(period.seqnum) 

name Ack-Management: 
begin 
if IsObjectInSndBnffers(period,seqnum) then 

{ An ack returned from the User-Receiver qrrives from the letwork 

begin 
Updat e-Eeeds-Ack(needs-ack, earliest-per ,period, seqnum) ; 
FreeSndBuffer(period,seqnum,snd-buifers,snd,used,bntiers); 
end 

begin { ack is either duplicate ack or ack of a declared lost tsdu not yet sent 
{ check if ack is in one of the periods being monitored by needs-ack array 
if (earliest-per <= period) and (period < (earliest-per + SIZE-OFJEEDS-ACK)) then 

Update~leeds~Ack(needs_ack,earliest~per,period,seqnum); 
{ when (snd-carr-per < periodj then ack = duplicate; discard it 
end ; 

else 

end ; 

from active to active 
any I : 1. .EUn-SIID-BUFFERS do 
provided snd-buffers[X].period <> EMPTY 
delay (ACK-TIMEOUT) 

{ Retransmit objects if expected ack has not arrived 

name Timeout-Retransmit : 
begin 
Prepare-nsdubdu, snd-buff ers [ X I  1 ; 
output lcep .n-datn-req(nsdn) ; 
end; 

end ; 

body POC-Receiver-body for POC-type; 
state active; 
type rcv-buffers-type = array [l..E'Un-RCV-BUFFERS] of tsdu-type; 

stored-type 
rcv-proc-obj-event-type 
rcv-adj-per-event-type 

= array ~O..HAX,PsRIOD~PER~R~~HIlRlSl,l..I] of integer; 
= (LOSE-OBJ, DELIVER-IEV-OBJ , DELIVER-BUF-OBJ) ; 

= (OBJ-PROCESSED, OBJ-STORED, WIT-EDGES) ; 
var tsdu: tsdu-type; 

rcv-used-buffers : integer; { # rcv buffers currently filled 
rcv-PO-matrix : PO-matrix-type ; { dynamic partial order matrix 
partial-order : partial-order-type; { negotiated static partial order 
PR-vector 
partial-reliability: partial-reliabilit~_tJpe; { negotiated partial reliability 
delivered : array-l-l,of-boolean_type; 4 true if tsdnCi] was dqlivered 
lost : array-1-l-of-boolean-type; { true if tsduci] assumed lost 
rcv-buffers : rcv-buffers-type; { buffers for out of order tsdus 
check-buffers : boolean; 
rcv-curr-per : integer; { period of objs being delivered 
stored : stored-type; { indicates buffer location of stored tsdu 
num-buffable-per : integer; { # successive periods which may be fully or partially buffered 
last-buffable-per : integer; 
rcv-proc-obj-event: rcv-proc-obj-event-type; { receiver events 
rcv-adj-per-event : rcv-adj-per-event-type; 
num-obj-curr-per-deliv-lost : integer; { t objects in current period already delir'd or lost 
max-num_obj_last-buffable-per : integer; € m a r  objects in last-bufferable-per 
curr-num-obj-last-buffable-per: integer; 

: Partidl-reliability-tJpa; { dynamic vector describing partial reliability 

{ if true, check stored tsdus for possible 4elivery 

{ last period for which objects may be buffered 

current objects in last-buffable-per 

E 
E 
E 
E 
E 
1 
E 
1 
E 
E 
E 
E 
E 
E 

E 
1 
> 
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function IsObjectStiLlUsefal(seqnnm: integer): boolean; primitive; 

function IsQOSLossExceeded: boolean; prjmitive; 

function IsObjectDeliverable (rcv-PO-matrix: PO-matrix-type; tsdu: tsdn-type): boolean; primitive; 

procedure Init-PO-Hatrix(var rcv-PO-matrix: PO-matrix-type; partial-order : partial-order-type) ; primitive; 

procedure Init-PR-Vector(var PR-vector : partial-reliability-type; 

{ return truti if particular object still has temporal value; otheroise false 

{ true if most recent loss results in less than negotiated QOS 

{ true when tsdu respects partial order and can be immediately delivered 

{ initialize PO-matrix with negotiated partial order 

{ initialize PR-vector with negotiated partial reliability class informat ion 

{ find an empty buffer in rcv-buffers and store tsdu in it 1 

{ object has been: delivered immediately upon arrival (DELIVER-IEY-OBJ) or delivered from > 
{ a buffer (DELIVER-BUF-OBJ) or preanmedlost (LOSE-OBJ); perform needed processing > 
{ determine .t of buffers to reserve for objects in current period 1 

{ Determine if object is currently being buffered > 
{ check if object 1 
{ either Delivered or lost; or C. Buffered > 
{ check if object can be buffered > 

> 
1 

> 
1 

partial-reliability: partial-reliability-type); primitive; 
1 

procedure Store-Receiv~,d-tsdu(tsdu: tsdu-type; ~ a r  rcv-buffers: rcv-buffers-type; 
var rcv-used-buffers: integer); primitive; 

procedure Process-Object(seqnnm: integer; rcv-proc-obj-event: rcv-proc-obj-event-type); primitive; 

function IumUndelirabl~Objects(matrix: PO-matrix-type): integer; primitive; 

function InBuffer(tsdu: tsdu-type): boolean; primitive; 

function AlreadyProcessed(tsdu: tsdu-type): boolean; primitive; 
is A. Before receiving current period; B. In receiving current period and 

function IsObjectBufferable(tsdu: tsdu-type): boolean; primitive; 

function IsObjectReceivable(rcv-PO~atrix: PO-matrix-type; tsdu: tsdu-type): boolean; 

procedure Adjust-Last-F.eriod(rcv-adj-per-event: rcv-adj-per-event-type; period: integer); primitive; 

procedure Prepare-tsdu( nsdu: nsdu-type; var tsdu: tsdu-type); primitive; 

primitive; 
{ check if object is either deliverable or bufferable 

{keep track of latest period for which an object can be buffered 

1 extract info from nsdu to produce tsdu; 

1 

> no need t o  extract nsdu header 

initialize to active 
var i,j: integer; 
begin 
nnm-buffable-per := 0; 
check-buffers := false; 
rcv-used-buffers := 0; 
for i:= 1 to IUX-RCV-BUFFERS do 

begin 
rcv-buff ers [i] .period : = EHPTY; 
rcv-buffersCi1 .seqnum := MPTY;  
for j : =1 to IUII_DATA_PER-II_OR_T_SDU do rcv-buff ers [il . info [ j] : = MPTY; 
end ; 

begin . 
for j := 0 to ~X-PERIOD-PER-RU4IISl do stored[j,il := EHPTY;; 
lostCi1 := false; 
delivered[i] := false ; 
end; 

for i := 1 to 1 do 

Init-PO-Hatrix(rcv-POaatrix,partial-order); 
Init-PB-Vector(PR-rector ,part ial-reliability) ; 
rcv-curr-per := 1 ; 
nam_obj_cnrr-per,deliv_loat :f 0; 
cnrr-num-obj-lastJmffable-per := 0; 
mar,nnm_obj_last,buffable,per := 0; 
Adjust-Last_Period(IlIT-EDGES ,rcv-curr-per) ; 
end ; 

trans 
from active to active 
when 1cep.n-data-indhsdu) 

{ An object from User-Sender arrives from the network 

name Check_lewl~,A~iring-Object  : 
begin 
Prepare-tsdu(nsdu,tsdu); 
if IsObjectReceivabXe(rcv-PO-matrix,tsdu) then 

{ extract important info from arriving nsdu 

begin 
if IsObjectDeliverable(rcv-PO-matrix,tsdu) then 

begin { deliver the tsdu 
output ucep.t-data-ind(tsdu); 
Process_Obj~ct(tsdu.seqnum,DELIVER-IEY-OBJ); 
Adjust-Last-Period(OBJ-PROCESSED,tsdu.period); 
end 
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else 
begin 
Store-Received-tsdu(tsda,rcv-brrff er8 ,rcv,used,buffers) ; 
Ad just -Last -Period (OB J-STORED , t sdu . per iod) ; 
end ; 

output lcep.ack(tsdu.period,tsdu.seqnum); 
if (PR~vector~tsdu.seqnom~ <> PBART-L) then 

end 

{ cannot deliver nor buffer; send ack if a duplicate 
begin 
if AlreadyProcessed(tsdu) and (PR-vector[tsdu.seqnuml <> IBART-L) then 

end ; 

else 

output lcep.ack(nsdu.period,nsdu.seqnd; 

end; 

from active to active 
provided check-buffers and ( 1  <= rcv-used-buffers) 

{ Check if any currently buffered objects can be delivered to User-Receiver 

{ enabled vhen an object delivered or lost provided at least one buffer is full 
var  i, buf-number: integer; 
name Check-Buffers-For-Delivery: 
begin 
while check-buff ers do 

begin { loop until one complete loop fails to deliver an object 
check-buffers := false; 
for i := 1 to I do 

begin 
buf -number : = storsdCrcv-curr-per mod BAX-PERIOD-PER-RU,i] ; 
if (buf-number <> EHPTY) then 

if IsObjectDeliverable~rcv~PO_matrir,rcv~b~ers~uf~number]~ then 
begin { a deliverable buffered object has been found 1 
output ucep.t-data-ind(rcv-bnffera[buf-numberl); 
Process~Object~rcv~buffers[buf~namber].seqnum,DELIVER~BUF~OBJ~; 
Ad'just~Last~Period(OBJ~PROCESSED.rcv~bnffersCbuf~numberl.period); 
end; 

end; 
end ; 

end ; 

from active to active 
delay (CHECK-V~IDITY..IlTERVIL) 

{ Periodically check objects for temporal value 

var i: integer; 
name Validate-Temporal-Value: 
begin 
for i := 1 to I do 

if (not (dsliveredCi1 or lost[i] or IsObjectStillUseful(i))) then 
begin { found nonuseful object; presume it lost 
Process-Object(i.LOSE-OBJ) ; 
if IsQOSLossExceeded then output ucep.QOSLoss-failed; 
if PR-rectorCil = BART-L then output lcep.ack(rcv-curr-per,i); 
Ad just ,Last,Period(OBJ-PROCESSED ,rcv-cnrr-per) ; 
end ; 

end; 
end ; 

1 

1 

I 

) 

body letwork-body for Ietvork-type; external; { netvork service betveen transport protocol entities 1 

1 { ..................... Hain Specification ............................................................... 

{ - - -- -- - ---- - -- --- - -.-- letwork Layer ................................................................... 
module letwork-type activity; ip lcepl : nsdu-chanuel(pvd) ; lcep2: nsdu-channel(pvd) ; end; 

modvar 
initialize 

User-Sender,Uaer-Receiver: User-type; POC-Sender, POC-Receiver: POC-type; Ietwork: Ietvork-type; 

begin 
init User-Sender vith User-Sender-body; 
init User-Receiver with User-Receiver-body; 
init POC-Sender vith POC-Sender-Body; 
init POC-Receiver vith POC-Receiver-body; 
init letuork vith Betaork-body; 
connect User-Sender.acep to POC,Sender.ucep; 
connect User,Receirer.acep to POC,Receiver.ucep; 
connect POC-Sender.lcep to 1etvork.lcepl; 
connect POC-Receirer.lcep to Ietaork.lcep2; 
end ; 

end. 
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